
Building a Multilingual Internet: The View from South Asia

By

Anushah Hossain

A dissertation submitted in partial satisfaction of the

requirements for the degree of

Doctor of Philosophy

in

Energy and Resources

in the

Graduate Division

of the

University of California, Berkeley

Committee in charge:

Professor Paul Duguid, Co-Chair
Professor Isha Ray, Co-Chair

Professor Cori Hayden
Professor Catherine P. Koshland

Summer 2022

Building a Multilingual Internet: The View from South Asia

Copyright 2022

by

Anushah Hossain

Abstract

Building a Multilingual Internet: The View from South Asia

by

Anushah Hossain

Doctor of Philosophy in Energy and Resources

University of California, Berkeley

Professor Paul Duguid, Co-Chair
Professor Isha Ray, Co-Chair

In this dissertation, I argue that the digitization of the Bangla letter, khanda ta, tracks the
transformation of the Western-oriented early consumer Internet into an open, global
infrastructure that better met the needs of international, multilingual users longing for digital
representation and equal affordances for communication. The story takes place primarily
between 2000 and 2005, in South Asia and Silicon Valley, but ventures out in time and space to
contextualize the events at hand. I follow the trajectories of standards-makers, software
hobbyists, government officials, major software companies, and linguists in turn, showing what
stakes and interests they held during this period, and how they shape the debate over khanda ta.
The issue sits of khanda ta sits at the crux of several dichotomies that achieve a certain synthesis
through its resolution: the gap between new open-channel internet governance institutions and
traditional, closed-participation forms of governance; the opposition between the new entrants
from the Global South and the mostly-Western actors who had designed the early Internet; and
the tension between socially-meaningful language conventions and machine-readable technical
standards.

Khanda ta’s eventual inclusion, or “encoding”, in the Unicode Standard represents the victory of
the open-governance model of new industry consortia such as the Unicode Consortium, in which
older authorities such as government ministries and international treaty organizations must fit
themselves. It also represents a recognition of the values and expertise of the Global South,
embodied by the South Asian experts in this debate, amongst those of the Western technical elite
designing critical digital infrastructures. And it highlights the role of intermediaries who must
accumulate both technical and linguistic expertise to build technical tools and standards for
language. In the end, my goal is to show the multitudinous threads that came together to build a
multilingual internet.

1

For Dada, Nanu, and Nanabhai.

i

Table of Contents

Table of Contents ii

List of Figures iii

Acknowledgements iv

Introduction 1

Chapter 1: Assembling the Multilingual Internet 26

Chapter 2: Building Bangla Software 52

Chapter 3: Digitizing Language Planning 85

Chapter 4: Accommodating Orthographic Reform 120

Chapter 5: The Battle over Khanda ta 147

Conclusion: Khanda ta, encoded 177

Bibliography 191

ii

List of Figures

Figure 1. Bangla Speakers Worldwide 6
Figure 2. Evolution of Indic scripts (Richard Ishida — Creative Commons) 7
Figure 3. Bangla consonants (Source: omniglot.com) 8
Figure 4. Bangla Vowels, Vowel Modifiers, and Diacritics (Source: omniglot.com) 9
Figure 5. Selection of Bangla conjuncts (Source: omniglot.com) 9
Figure 6. Bangla letter khanda ta 13
Figure 7. Data coding scheme 18
Figure 8. Glyphs and Characters (Source: The Unicode Standard v.1) 20
Figure 9. Glyph variants of Ra 29
Figure 10. CJK Glyph variants 31
Figure 11. Codepoint Sequence Example 33
Figure 12. Alignment of Indic Scripts in ISCII (Bureau of Indian Standards, 1991) 36
Figure 13. Vowel modifiers on Ka (Bhargav Chowdhury - Creative Commons) 37
Figure 14. “Text Rendering Process” The Unicode Standard V.1 38
Figure 15. Examples of ta+ta+Akar in Ligated, Non-Ligated, and Galant-forms (Unicode PRI-30) 38
Figure 16. Original Mac Bitmap Fonts (David Remahl - Creative Commons) 41
Figure 17. IBM Selectric “Symbol 10” Font 42
Figure 18. Arabic forms for the letter “Mim” (The SVG effect - creative commons) 45
Figure 19. Subscript and Nukta 46
Figure 20. Example of Broken Bangla font 50
Figure 21. Snapshot of The Free Bangla Fonts original Website (Wayback Machine) 58
Figure 22. Snapshot of Bengalinux Website (Wayback machine) 60
Figure 23. Snapshot of Andy White’s Blog Post 77
Figure 24. Banner from Andy White’s Personal Website 78
Figure 25. Snapshot of Unicode Membership (pre-2019 Changes to Fee Structure) 87
Figure 26. Alignment of Indic Scripts in ISCII (Bureau of Indian Standards, 1991) 92
Figure 27. Om Vikas at TDIL Meet 2001 (Language Technology Flash, May 2001) 94
Figure 28. Cover of Language Technology Flash, July 2002 98
Figure 29. Map of British India at 1947 Partition (Map by Julius Paolo) 104
Figure 30. Letter from Om Vikas to Unicode Technical Committee 111
Figure 31. Snapshot of Unicode Document Registry 112
Figure 32. Closing Slide of Om Vikas’ UTC Presentation 115
Figure 33. Snapshot of Altruists International Website (Wayback Machine) 122
Figure 34. Problem Statement from PRI-9 on Ra (Reph) and Ja (Jofola/Yaphala) 125
Figure 35. Issues with khanda ta rendering in PRI-9 126
Figure 36. Halhed’s A Grammar of the Bengal Language (1778) 132
Figure 37. Borno Spostikoron Conjunct reforms from 136
Figure 38. A mock-up of the preferred double nukta display 142
Figure 39. Example of Garbage Type: “AAAH!!” 144
Figure 40. ASCII art of Fortress 146
Figure 41. Three ways versions of silenced ta from PRI-30 162
Figure 42. Text Sequences from Model C - khanda ta rendered by ta+virama+zwj 162
Figure 43. Letter of Support from Government of India 166
Figure 44. Minimal Pairs Argument from Feedback on PRI-30 168

iii

Acknowledgements

"When did you decide you were going to do your dissertation on Bangla?!" my mother had asked
me in bewilderment after listening to me give a practice quals talk. This project was as much a
surprise to me as it was to her. I grew up speaking Bangla but knew little about my birth country
until a few years ago. But the exposure I had through my family was enough to seed the
questions in my mind that became too fascinating to ignore and would eventually bloom into this
dissertation. Equally influential was my time spent on the internet growing up -- I'm grateful that
the hours I invested participating in virtual communities have finally found a productive use.

I first want to thank the institutions that generously funded this research: the Wood-Calvert
Engineering Funds, the Chowdhury Center for Bangladesh Studies, the Berkeley Center for New
Media's Lyman Fellowship, and the Ford and Sloan Foundations' program on Critical Digital
Infrastructure. I am especially grateful to the Ford and Sloan's program managers, Michael
Brennan and Josh Greenberg, who gave early encouragement to my research agenda and
introduced me to the wonderful cohort of scholars who in turn helped shape this work.

Thank you to my community at ERG that continually validated my choice to study the internet
while everyone was studying slightly more world-historical events like climate change. The
genuine interest and support I felt from ERG helped me stay excited and passionate about this
project. I want to thank my cohort, Water Group, the finer things listserv, Fort Row, and ERG
Online, my micro-communities in this program that made graduate school so much fun and
made my projects sharper. Thank you to my wonderful committee members, who took a chance
on me and this project when they had little to go on. Thank you to Isha Ray for affirming I
always had a place at ERG. Thank you to Cori Hayden for always excellent comments and for
designing the seminar that influenced much of my thinking in this dissertation. Thank you, Cathy
Koshland, for sharing your time, mentorship, and cross-displinary expertise with me. I am so
grateful to have gotten the chance to work with you throughout this degree. And thank you to
Paul Duguid, with whom I've gotten to spend many cherished afternoons discussing internet
histories and treatises over tea in South Hall. Thank you for supporting this journey and being
the perfect guide through it.

Beyond my department and committee, I had a wonderful network of mentors who encouraged
me, advised me, and sharpened this work. Thank you to Ashwin Mathew, who told me I needed
to apply for that first grant that launched this work. Thank you to Debbie Anderson, who helped
me build relationships with the key actors that feature in this work. Thank you to Ken Whistler
for being a generous and reflective storyteller, and for being such a diligent archivist — this
dissertation could not exist without your careful curation. Thank you to Keith Murphy for being
my Unicode partner-in-crime — one of the few people who knew exactly what I was talking
about if I started going off about "dotted circles." Thank you to Isabelle Zaugg for generously
sharing your work and helping build this nascent community of Unicode scholars. Thank you to
Abhijeet Paul for teaching me to read Bangla and helping me understand what this project could
mean to the Bengali community. Thank you to Matthew Berry, who took the time to delve into

iv

my project and helped me draw in scholarship on print cultures. Thank you to Manish
Goregaokar for patiently answering my repeated questions about characters and glyphs and all of
the other intricacies of Unicode.

My utmost gratitude to all of the keepers of the archives, mailing lists, and personal websites that
constituted the corpus for this dissertation. A special thanks to the Internet Archive for preserving
so much of the early Web — the stories featured here would be lost without the work of this
important institution.

Thank you to each of my interviewees. I feel honoured to have the opportunity to tell your
stories and share your work. I hope I have done it justice.

For the inspiring conversations and endless emotional support, I want to thank Arvin Javadi,
Tejomay Gadgil, and Esther Shears. Thank you to Katherine Young and Annie Ferguson, who
read over everything I send them, no matter the hour, and whose friendships mean the world to
me. Thank you to Jonathan Breit, for listening to me talk about khanda ta incessantly over the
last two years. Thank you for all of your love. Thank you to my parents, Naila Hussain and Asif
Hossain, for being my biggest cheerleaders. Thank you for always asking to read drafts, for never
letting me forget how much you love me, and for giving me all the things in life that brought me
to this moment. Thank you to my best friend and sister, Sariah Hossain. All my love, always.

I can hardly believe this project and my time at Berkeley have come to an end. For someone who
moved every two years growing up, it was an incredible and novel experience to stay in one city
and one school for so long. Now two undergraduate degrees, a masters, and a PhD later, I am
finally getting ready to leave. I owe as much thanks to the cafe workers that fueled this
dissertation as I do my friends and family; thank you to everyone at Yali's on Oxford where I
began every morning, Brewed Awakening where I spent my afternoons, and Philz on Shattuck
where I'd stay until close in the evenings. These were the places where my friends knew to look
for me, and they are the places I'll always picture in my mind when I think of this project.

In many ways I found myself by accident in the perfect place to complete this research. Berkeley
is the first university in the country to have a Bangladesh Studies center, which was started
during my graduate program. It is the only university member of the Unicode Consortium, and
the Script Encoding Initiative directed here by Dr. Debbie Anderson is responsible for getting
hundreds of minority scripts encoded in Unicode. It is the home of the BSD open source
operating system, and of course, the birthplace of the Free Speech Movement. The history of this
university is not lost on me and I feel honoured to have been able to spend my undergraduate
and graduate years here.

v

Introduction

“For a language community, a script isn’t just a bunch of characters; it is a symbol of national and
cultural identity, a political and emotional issue, a domain where ‘angels fear to tread.’” 1

Gautam Sengupta, a Bengali linguist, was typing with passion and frustration to the Unicode
mailing list, where hundreds of messages were being passed back and forth over the digital
representation of one Bangla letter. It was the letter khanda ta, a little used, but nonetheless
essential, letter of the Bangla alphabet. Khanda ta was not appearing correctly on computers, and
the Unicode Consortium, the nonprofit organization responsible for setting the rules of digital
text, had not been doing enough to fix the issue – or so Sengupta felt.

Bengalis had been raising the issue of khanda ta for four years by this point, beginning with a
humble message posted to the same listserv in the year 2000. 2

There was a clear contrast in the tone of Sengupta’s message and the initial post. The
Bangladeshi newcomer had felt it necessary to explain where his country was located and what
language was spoken there – striking disclaimers given that he was writing to the people who
had already included it in their Standard. But most of the members of the Unicode Consortium
were based in the West. The Consortium was founded by some of the most prominent North
American software companies in 1991; its initial members included representatives from Xerox,
Apple, IBM, and Microsoft. For those appealing from the Global South to this esteemed list of
companies, it was easy to feel intimidated and out-of-place.

But by 2004, when Sengupta was writing, the world had already changed in significant ways.
The potential of the Internet as a democratizing force — a way to cheaply access information and
communicate with anyone around the world — was readily recognized. Though the mobile
phone revolution had yet to transform access to the Internet in relatively-disconnected regions
like South Asia, a vanguard of South Asian technologists had glimpsed a future marked by digital
technologies and felt an urgency to make them available and accessible to their home
populations. And in the context of the Unicode Consortium, there had been enough interactions

 Sengupta, Gautam. “[indic] Re: [Fwd: Re: All Bengali behaviours (not only khanda ta)]” Email, February 3, 2004.1

 Rahman, Md Ziaur. “Bangla(Bengali) letter Missing.” Email, July 27, 2000.2

1

between the Bangla user community and the Western technologists that the issue of khanda ta
had evolved from a polite request to a resolute demand for a solution.

In this dissertation, I argue that the deceptively small case of khanda ta’s encoding in the
Unicode Standard tracks the transformation of the Western-oriented early consumer Internet into
an open, global infrastructure that better met the needs of international, multilingual users
longing for digital representation and equal affordances for communication. The issue sits of
khanda ta sits at the crux of several dichotomies that achieve a certain synthesis through its
resolution: the gap between new open-channel internet governance institutions and traditional,
closed-participation forms of governance; the opposition between the new entrants from the
Global South and the mostly-Western actors who had designed the early Internet; and the
tension between socially-meaningful language conventions and machine-readable technical
standards. As one Microsoft employee responded to Sengupta’s declaration above, “I had not
expected the extent to which the emotional issues would extend to how a script is encoded in
bits and bytes.” 3

Khanda ta’s eventual inclusion, or “encoding”, in the Unicode Standard represents the victory of
the open-governance model of new industry consortia such as the Unicode Consortium, in which
older authorities such as government ministries and international treaty organizations must fit
themselves. It also represents a recognition of the values and expertise of the Global South,
embodied by the South Asian experts in this debate, amongst those of the Western technical elite
designing critical digital infrastructures. And it highlights the role of intermediaries who must
accumulate both technical and linguistic expertise to build technical tools and standards for
language.

Over the course of this dissertation, I chronicle how khanda ta transforms from being an “absent”
letter from the Unicode Standard, to a software bug, to an emblem of the ignorance of Western
technocrats. The story takes place primarily between 2000 and 2005, in South Asia and Silicon
Valley, but ventures out in time and space to contextualize the events at hand. I follow the
trajectories of standards-makers, software hobbyists, government officials, major software
companies, and linguists in turn, showing what stakes and interests they held during this period,
and how they shape the debate over khanda ta. In the end, my goal is to show the multitudinous
threads that came together to build a multilingual internet.

Internet histories

I argue that the period of the early 2000s was a critical moment of articulation, when the design
of the digital environment that now supports much of our social lives was being determined.
Personal computers were still the primary mode of accessing the internet. Internet Explorer was
the most popular browser, followed by Netscape Navigator and Mozilla Firefox. Blogging was
popular. Wikipedia was new and inconsistently reliable. There was still a feeling of potential, that

 Constable, Peter. “[indic] Re: [Fwd: Re: All Bengali behaviours (not only khanda ta)]” Email, February 3, 2004.3

2

the Internet would democratize access to information, enable unprecedented connectivity, and
cut out intermediaries.

Amidst all of the talk of these opportunities, there was simultaneous awareness that internet
access was not spreading evenly around the world. There was a “digital divide,” in which the
poor, remote, and technologically-illiterate were being left out from reaping the benefits provided
by the internet. The digital divide encompassed access to infrastructure and digital devices, but
also the availability of local-language content. The New York Times published an article in 1996
with the headline: “Computer Speak; World, Wide, Web: 3 English Words.” It said the Web was
written mostly in English, creating a high barrier to entry for non-English speakers. How had this
happened? It claimed:

The Internet started in the United States, and the computer hackers whose reality has always
been virtual are almost all American. By the time the net spread, its linguistic patterns -- like
its principal architecture and best software -- were all Made in the U.S.A. 4

Another popular piece published in the American Prospect in 2001 made a similar argument:

The Internet was basically an American development, and it naturally spread most rapidly
among the other countries of the English-speaking world. Right now, for example, there are
roughly as many Internet users in Australia as in either France or Italy, and the English-
speaking world as a whole accounts for over 80 percent of top-level Internet hosts and
generates close to 80 percent of Internet traffic. It isn't surprising, then, that the Web is
dominated by English…

But the tendency to use English doesn't disappear even when a lot of speakers of the local
language have Internet access. Since the Web turns every document into a potentially
"international" publication, there's often an incentive for publishing Web sites in English that
wouldn't exist with print documents that don't ordinarily circulate outside national borders.
And this in turn has made the use of English on the Web a status symbol in many nations,
since it implies that you have something to say that might merit international attention. 5

Both of these were market-based explanations for why English dominated online. The user base
spread from one English-speaking country to another; users seeking an audience wanted to
appeal to the largest English-speaking one. But at the same time, there were issues in the supply.
It was not yet easy to type in the writing systems of other languages. The digital infrastructure –
a “stack” of technical tools including encoding standards, font formats, keyboards, user interfaces
and more – that would eventually enable multilingual digital communication, were still being
assembled. This stack was a work-in-progress until the mid-2000s, when, I argue, it suddenly
became easier to open a Word file or webpage and type or read text that wasn’t in English.

 Michael Specter, “Computer Speak;World, Wide, Web: 3 English Words,” The New York Times, April 14, 1996, sec. Week in Review, 4

https://www.nytimes.com/1996/04/14/weekinreview/computer-speak-world-wide-web-3-english-words.html.

 Geoffrey Nunberg, “Will the Internet Always Speak English?,” The American Prospect, December 19, 2001, https://prospect.org/5

api/content/3e35e7bd-ce0d-57fe-bdc0-8327087966a9/.

3

https://prospect.org/api/content/3e35e7bd-ce0d-57fe-bdc0-8327087966a9/
https://prospect.org/api/content/3e35e7bd-ce0d-57fe-bdc0-8327087966a9/
https://www.nytimes.com/1996/04/14/weekinreview/computer-speak-world-wide-web-3-english-words.html

Many of the gaps this dissertation fills were first articulated by computer historian, Michael
Mahoney in “The History of Computing in the History of Technology”. As Mahoney wrote, 6

We speak of the computer industry as if it were a monolith rather than a network of
interdependent industries with separate interests and concerns…What is truly revolutionary
about the computer will become clear only when computing acquires a proper history, one
that ties it to other technologies and thus uncovers the precedents that make its innovations
significant.

At his time of writing, the history of computing tended towards: corporate histories/“insider
histories,” first-hand and expert accounts, journalistic accounts, and “social impact” analyses.
These works tended to be myopic, focused on the spectacular and unusual, or were polemical –
better suited to eventually becoming primary sources.

The recent history of digital text covered in this dissertation, from about 1984 to 2004, is still in
this nascent stage. As Haigh et al. have written, the dearth of scholarly attention following a
historical approach may be related to the recency of the events at hand: “The ever-unfolding
history of the Internet therefore risks falling into a kind of disciplinary no-man’s-land—too old to
be of interest to policy scholars or sociologists, but too recent and far too unstable for most
historians to feel comfortable working there.” This period is just beginning to enter into 7

historical view, as illustrated through new publications on the BBS networks of the 1990s, for
example. 8

The Unicode Standard, the base layer of the “stack” of technologies I explore in my dissertation,
has already received attention from technology historians and Science and Technology Studies
scholars. In his article, John emphasized that the design of the multilingual internet is based on
historical contingencies and political-economic factors: in the case of Hebrew, John argues that it
was Microsoft’s adoption of one framework of representing Hebrew (“logical Hebrew”) over
another (“visual Hebrew”) that led to its universal adoption. Similarly, he writes that Unicode
should not be viewed as the teleological victor in the world of standards, but rather the dominant
standard “because of the alliance of U.S. firms supporting it.” Unicode has been resisted in 9

countries such as Korea in part for this very reason — seen as an emblem of Western culture.
Initial antagonism towards the Unicode Standard led to the adoption of a ‘dual standard’ on
Korean computers in the late 1990s, including both the existing Korean code and the new
Unicode Standard. Dongoh Park interprets this reaction as “a product of a complex web of social

 Michael S. Mahoney, “The History of Computing in the History of Technology,” Annals of the History of Computing 10, no. 2 (April 6

1988): 113–25, https://doi.org/10.1109/MAHC.1988.10011.

 Thomas Haigh, Andrew L. Russell, and William H. Dutton, “Histories of the Internet: Introducing a Special Issue of Information & 7

Culture,” Information & Culture: A Journal of History 50, no. 2 (2015): 143–59, https://doi.org/10.1353/lac.2015.0006.

 Kevin Driscoll, The Modem World: A Prehistory of Social Media (New Haven: Yale University Press, 2022).8

 Nicholas A. John, “The Construction of the Multilingual Internet: Unicode, Hebrew, and Globalization,” Journal of Computer-9

Mediated Communication 18, no. 3 (April 1, 2013): 321–38, https://doi.org/10.1111/jcc4.12015.

4

https://doi.org/10.1111/jcc4.12015
https://doi.org/10.1109/MAHC.1988.10011
https://doi.org/10.1353/lac.2015.0006

phenomena regarding globalization in the early 1990s in Korea...While some saw Western
culture and knowledge as a modernizing force, there was also a growing anxiety that Western
culture would eclipse Korean identity.” Other scholars such as Isabelle Zaugg have further 10

interrogated the dissonance between language communities and Unicode standards-makers.
Unicode’s inclusion of Ethiopic, a major script of both Ethiopia and Eritrea, was delayed because
of clashing interpretations of how the script was to be encoded -- in a “decomposed” form
splitting glyphs into constitute consonant and vowel parts, or in forms more easily understood by
the user community. Zaugg writes, “it was as if someone had tried to shatter what they perceived
to be the indivisible atoms of their script… This offense..represented a common
misunderstanding among digitally-disadvantaged language users about how Unicode works.” 11

These themes are highlighted in this work: the historical contingencies behind Unicode’s
widespread adoption; the gap between the perceptions of user communities and engineering
experts; the clash of a “universal” standard against a national one. There are no works to date,
however, that situate the Unicode Standard within the ecosystem of technologies and standards
for computing and digital communication more broadly. In part, due to the choice of case study –
the Bangla script – this dissertation indexes not only the Unicode Standard, but also the
standards and software produced by specific technology companies, such as Microsoft and Apple,
and the parallel technologies produced by hobbyists, all of which grapple with the Standard. As a
result, we are able to see how the Unicode Standard is situated amongst these technologies, but
also how it is forced to respond to them. Much like Mahoney wrote, what is truly innovative
about the Unicode Standard only becomes clear when it is tied to other technologies and its
precedents are uncovered. I therefore take care to note the intersections of the Unicode Standard
and the stack of tools built atop it with histories that have hitherto received little scholarly
attention, such as histories of text encoding and typography. Through my analysis of Microsoft
alongside Unicode, I also contribute to a new field of histories of large international technology
companies that situated them within local cultural and political contexts – a veer away from the
“corporate” and “insider” histories that are more commonly found in the literature. 12

The Bangla case

Khanda ta is the letter at the center of this study, and Bangla is the language and writing system
that contains it. Bangla, often anglicized as “Bengali,” is both a language and a script. The
language is spoken primarily in the modern-day nation-states of Bangladesh and India. It is
spoken in several Indian states, but it is the majority language of West Bengal – which is on the
eastern side of India, but the western side of the Bengal delta. At the time of writing, there are

 Dongoh Park, “The Korean Character Code: A National Controversy, 1987–1995,” IEEE Annals of the History of Computing 38, no. 2 10

(2016): 40–53, https://doi.org/10.1353/ahc.2016.0021.

 Isabelle Zaugg, “Digitizing Ethiopic: Coding for Linguistic Continuity in the Face of Digital Extinction” (PhD diss., American 11

University, 2017.

 Others in this category include Colette Perold, “IBM’s World Citizens: Valentim Bouças and the Politics of IT Expansion in 12

Authoritarian Brazil,” IEEE Annals of the History of Computing 42, no. 3 (July 2020): 38–52, https://doi.org/10.1109/
MAHC.2020.3010892. and John 2013.

5

https://doi.org/10.1353/ahc.2016.0021
https://doi.org/10.1109/MAHC.2020.3010892
https://doi.org/10.1109/MAHC.2020.3010892

approximately 100 million first- or second-language Bangla speakers in Bangladesh, 85 million in
India, and 25 million more across the diaspora – many of whom are settled in the United
Kingdom, United States, and Middle East. The story of Bangla digitization should not be 13

considered a niche case study of the periphery; it is the seventh-most spoken language in the
world, and its digitization affects millions. The Indic script family, for which this case study of
Bangla is directly relevant, is used by nearly two billion people in the world, magnifying this
story’s significance. 14

Figure 1. Bangla Speakers Worldwide

The Bangla language is typically written with the Bangla script. But the Bangla script is also used
for other languages such as Assamese and Manipuri (though orthographic reform in recent
decades has led to the replacement of the Bangla script with the traditional Meetei Mayek script
for the Manipuri language).

There are differences in how the Bangla language is spoken across India and Bangladesh, and
even within each country. Colloquialisms vary across the national borders, as do the spellings of
some words. Within Bangladesh, there are also hundreds of different Bangla dialects, some of
which are mutually unintelligible to each other. These differences are consequential when it
comes to software translation, where different versions must exist for Indian Bangla and
Bangladeshi Bangla, for example. An analogous system for English speakers may be the
difference between American English and British English.

 “Bengali Language | Britannica,” accessed June 28, 2022, https://www.britannica.com/topic/Bengali-language.13

 Peter T. Daniels, “Indic Scripts: History, Typology, Study,” in Handbook of Literacy in Akshara Orthography, ed. R. Malatesha Joshi 14

and Catherine McBride, Literacy Studies (Cham: Springer International Publishing, 2019), 11–42, https://doi.org/
10.1007/978-3-030-05977-4_2.

6

https://www.britannica.com/topic/Bengali-language
https://doi.org/10.1007/978-3-030-05977-4_2
https://doi.org/10.1007/978-3-030-05977-4_2

This dissertation focuses on script digitization for the Bangla language. In other words, I focus on
the Bangla script, as used for the Bangla language. There are complex politics of how the Bangla
script is used for languages such as Assamese, or whether it is even appropriate to call the script
“Bangla” instead of “Assamese” or “Bangla-Assamese.” The Assamese alphabet contains several
unique letters that are not used in Bangla, which have been the subject of their own
controversies and discussions with Unicode. These are not the subject of the present study, 15

however, and I use the shorthand of the “Bangla script” as opposed to “Bangla-Assamese” for the
limited purposes at hand.

The Bangla script

The Bangla script is derived from the Ancient Brahmi script, one of two historic scripts from the
Indian subcontinent. The family of scripts descended from the Ancient Brahmi script are often
known as “Indic scripts,” and are used throughout South and South East Asia.

Figure 2. Evolution of Indic Scripts (Richard Ishida — Creative Commons)

 “Why Assamese Script Wants Its Own Slot, and What It Has Got Instead,” The Indian Express (blog), June 28, 2018, https://15

indianexpress.com/article/explained/why-assamese-script-wants-its-own-slot-and-what-it-has-got-instead-5236249/.

7

https://indianexpress.com/article/explained/why-assamese-script-wants-its-own-slot-and-what-it-has-got-instead-5236249/
https://indianexpress.com/article/explained/why-assamese-script-wants-its-own-slot-and-what-it-has-got-instead-5236249/

Figure 3. Bangla Consonants (Source: Omniglot.Com)

8

http://omniglot.com

Figure 4. Bangla Vowels, Vowel Modifiers, and Diacritics (Source: Omniglot.Com)

Figure 5. Selection of Bangla Conjuncts (Source: Omniglot.Com)

9

http://omniglot.com
http://omniglot.com

Indic scripts have many common characteristics that make the incidents in this dissertation
highly relevant to other Indic scripts beyond Bangla. They are alpha-syllabic, meaning each
consonant has a default vowel associated with it, constituting a syllable. In Bangla, the inherent
vowel is the phoneme /ɔ/, typically denoted with the letter ‘a’. The Bangla letter ‘ক’ represents
the sound /kɔ/ and is typically romanized as ‘ka’. The inherent vowel can be changed via ‘vowel
modifiers,’ which attach onto the base consonant, or silenced with a symbol that typically
appears under the consonant, called a virama or halant (e.g.ক্) . Vowel modifiers can appear on
either side, below, or above the base consonant, depending on the Indic script. Vowels also exist
in an independent form for cases when they are not modifying a consonant. When consonants
appear next to each other, they can ligate into new graphical representations called “conjuncts”.
In sum, a common characteristic for Indic scripts is that the visual representations of letters can
vary depending on what other letters are next to them. A single “glyph” or visual representation
may also represent more than one letter of the alphabet. Unlike the Latin alphabet, there is not a
one-to-one correspondence between letter and glyph. This quality, and divergence from the logic
of Latin scripts, has proven difficult for modern computers to handle, as I discuss in Chapter 1.

Typographers working in both analog and digital media consider Bangla an especially difficult
script to mechanize. Letters and diacritics stack considerably atop one another. Vowel flourishes 16

can extend on both sides of a base letter. Sequences of consonants form complicated ligatures
that can depart quite drastically from their constituent parts. Type designers and engineers have
had difficulty reckoning with these qualities since the birth of mechanical typesetting in the early
20th century, carrying through to the internet age. From a technical perspective, the Bangla
script is an excellent case study for examining the limits of type and computing technologies,
given its finicky structure.

Additional context that hangs in the background of this dissertation is the heavy politics of the
Bangla language and script. A brief history: Bengal was first split into two regions during the late
British colonial period, in 1905. It had been a hotbed of political activity, spurred by a vibrant
regional literature; splitting East and West Bengal was an attempt by the British to “divide and
conquer.” Within years, the partition was overturned. But when India gained independence from
the British in 1947, Bengal was again the site of partition. The 1947 Partition followed a religious
logic, and East Bengal became the designed site for Muslims, and West Bengal for Hindus.
Regional identity remained strong and the Bengal border remained porous for several years,
however, until the formalization of national passports and passport checks in 1952. 17

Religion, ethnicity, and language were all closely associated with identity in post-Independence
South Asia. The early history of the Independence era is marked by battle and bloodshed over
the right to gain recognized status for one’s ethno-linguistic group. In India, this manifested as
fights over the drawing of state lines according to language group. In Pakistan (then still a
discontiguous region on either side of India), it manifest as a nine-month war in 1971 in which

 Riccardo Olocco, “Linotype Bengali and the Digital Bengali Typefaces,” MA thesis, University of Reading, 2014.16

 Pallavi Raghavan, “The Making of South Asia’s Minorities: A Diplomatic History, 1947- 1952,” Economic and Political Weekly, May 17

21, 2016.

10

the Eastern wing of Pakistan, what was once East Bengal, fought for independence and became
the nation-state of Bangladesh. Bangladesh’s Liberation War strengthened regional pride in the
Bangla language and script; a precipitating event for the Liberation War had been a proposal by
the Pakistani government to replace the Bangla script with Latin letters. It also led to 18

international recognition: in 1999, the United Nations Educational, Scientific and Cultural
Organization (UNESCO) proclaimed February 21st of every year to be “International Mother
Language Day,” the day in 1952 when Bangla language activists in Dhaka were martyred and
which inspired the decades-long Bangla language movement.

The Bangla language can thus be seen in some ways as representing a special case due to its
history and politics. There is a strong emotional charge laden in the language, and the Liberation
War had occurred recently enough that most of the individuals who feature in this study felt it
impact their families or neighbors. As their personal histories will show, particularly in Chapter 2,
understanding of the Liberation War is not confined to Bangladeshis alone; those across the
border in India feel strong sympathies for their ethno-linguistic compatriots.

At the same time, I warn against overstating the importance of this political history, and denying
some of the technical reasoning that emerges around the khanda ta debate from the Bangla user
community. As several Unicode staffers were wont to do, it is easy to dismiss arguments made for
Bangla as coming from a place of emotion or nationalism alone. The language politics are
relevant and present, but not the only factors at play. Linguistic pride is a widespread
phenomenon, and the desire to have one’s language and script properly represented is not a
unique sentiment. Nationalism-motivated resistance or interactions with the Unicode Standard
have been documented by prior scholars, in contexts such as Israel, South Korea, China, Japan,
and Ethiopia. In each case, the particular history and politics of language provide a “script” (in 19

the sociological sense) that governments and individuals have utilized to make their points; I
share the history of the Bangla language to provide background on the scripts that appear in this
story.

Finally, as a note on both case and method, I emphasize here the advantages of taking a language
as the unit of study. Using the Bangla language as my entry point, I am able to study relations
between the institutions and histories of two nation-states, India and Bangladesh. I am also able
to explore the connections between diasporic Bangla users and those based in South Asia. Finally,
I am also able to explore the relationship between native speakers and outsiders, or “foreigners”
or “non-native speakers,” as they are referred to by interlocutors. I am able to show how, due to
India’s relatively high economic and political status and promise of offering ‘the next billion
users’, Bangla gains the attention of Western technology companies – even when Bangladesh is
far off the Western radar. I also illustrate the warring allegiances of diasporic Bengalis, who strive
for membership to an emerging class of Western-educated technical elite, while still feeling
connection to their home countries. And I uncover the surprising leadership of non-native Bangla

 Dennis Kurzon, “Romanisation of Bengali and Other Indian Scripts,” Journal of the Royal Asiatic Society of Great Britain & Ireland 18

20, no. 1 (January 2010): 61–74, https://doi.org/10.1017/S1356186309990319.

 See, for example, John 2013; Park 2016; Tsu 2022; Zaugg 2017.19

11

https://doi.org/10.1017/S1356186309990319

speakers who, in many cases, can articulate the grammar and evolution of the Bangla language
with greater learned expertise, in comparison to those for whom it is an instinctive mother
tongue.

Histories of South Asia

This dissertation also contributes to the field of modern South Asian history, and particularly,
South Asian histories of science and technology. I bring together histories of language politics
and information technologies in this work.

The relationship between technology and South Asian society has most often been viewed in the
extant scholarship through the lens of economic development. Digital technology – in the form 20

of internet access or mobile phones – has been conceived of as an intervention that can raise
standards of living, increase access to information, reduce corruption, improve crop yields,
provide access to education and healthcare, bolster disaster preparedness, and much more. 21

There is much less literature historicizing technologies within the long sweep of South Asian
history and situating it within social and political contexts. One illuminating example of this
latter category is Lilly Irani’s anthropological study, Chasing Innovation, which situates the figure
of India’s 21st century “entrepreneurial citizens” as a metamorphosis of the country’s original
nationalist development project. Irani examines how everyday actors such as designers and
engineers came to constitute a distributed network of agents, performing planning much in the
way the state did in the immediate postcolonial period. This dissertation picks up on this 22

theme, showing how members of the Bengali diaspora, in particular, become similar distributed
agents in the sphere of language technology – picking up, in this case, where the state has
faltered. Other recent publications taking a historical approach include Menon (2018), which
details the contrasting vision for computers in 1950s India, in comparison to the United States,
the United Kingdom, and Soviet Union during the same era. The digital computer was envisioned
as a tool for state planning. Subramanian (2003) highlights the close relationship between 23

national politics and the computer industry in India, going through waves of openness and
closure towards international computer companies. Singh (2018) describes how American and 24

 Asif A. Siddiqi, “Technology in the South Asian Imaginary,” History and Technology 31, no. 4 (October 2, 2015): 341–49, https://20

doi.org/10.1080/07341512.2016.1142632.

 William Mozzarella, “Beautiful Balloon: The Digital Divide and the Charisma of New Media in India,” American Ethnologist 37, no. 21

4 (2010): 783–804.

 Lilly Irani, Chasing Innovation Making Entrepreneurial Citizens in Modern India, 2019, https://escholarship.org/uc/item/22

3239b1qv.

 Nikhil Menon, “‘Fancy Calculating Machine’: Computers and Planning in Independent India,” Modern Asian Studies 52, no. 2 23

(March 2018): 421–57, https://doi.org/10.1017/S0026749X16000135. Menon chronicles a nascent precursor to Chile’s
computerized state-planning initiative, Project Cybersyn, whose rise and fall has been chronicled by Eden Medina (2011).

 Ramesh Subramanian, “India and Information Technology: A Historical & Critical Perspective,” Journal of Global Information 24

Technology Management 9, no. 4 (October 1, 2006): 28–46, https://doi.org/10.1080/1097198X.2006.10856431.

12

https://doi.org/10.1080/1097198X.2006.10856431
https://doi.org/10.1080/07341512.2016.1142632
https://doi.org/10.1080/07341512.2016.1142632
https://escholarship.org/uc/item/3239b1qv
https://escholarship.org/uc/item/3239b1qv
https://doi.org/10.1017/S0026749X16000135

British entrants to metal typography during the late colonial period had to navigate British
colonial stakeholders as well as a growing nationalist movement; much like the Unicode
Consortium as presented in Chapter 4 of this dissertation, typography firms in the 1930s held
inarguably political positions, as they were inevitably pulled into decisions about who had the
authority to define a script, and what that typed script would look like. Though the pre-25

Independence study on British India reflects on the modern-day country of Bangladesh, there are
no other studies of the computing industry after 1947 that focus on Bangladesh. In this
dissertation, I draw instead on first-hand accounts.

Scholarship on South Asian language movements has focused primarily on the precipitating
factors and impacts on national policy In several cases, as with the Bangladesh Liberation War, 26

there is much work still to be done on unsettling the singular nationalist narrative of a uniform
populace seeking independence from Pakistan. Beyond this ongoing need for excavation of the 27

language movements, there is a dearth of scholarship on the lasting repercussions of the
language movement – how it remains in the memory of its participants, and how it is articulated
and passed down to second and third generations. Chapter 2 of this dissertation picks up on
these themes, showing how traces of the Bangla language movement have instilled a passion for
language and language technology amongst those one generation removed from the war.

At the time of writing, there is little scholarly literature on the intersection of language and
technology in South Asia. The few published sources in peer-reviewed journals are personal
accounts and memoirs of the computing industry, which again serve as primary sources in this
study.

Sociolinguistics for the digital age

Figure 6. Bangla Letter Khanda Ta

“Is it truly an independent letter in the alphabet? Can it already be represented in the standard?
Why didn’t other Indic scripts have a symbol like this?” These were some of the questions at the
heart of the khanda ta debate, and they spanned the technical and the linguistic. Alongside
contributions to histories of the internet and histories of South Asia, this dissertation contributes

 Vaibhav Singh, “The Machine in the Colony: Technology, Politics, and the Typography of Devanagari in the Early Years of 25

Mechanization,” Philological Encounters 3, no. 4 (November 27, 2018): 469–95, https://doi.org/10.1163/24519197-12340051.

 Ramachandra Guha, India After Gandhi: The History of the World’s Largest Democracy, Reprint edition (New York/N.Y: Ecco, 26

2008); Mithilesh Kumar Jha, Language Politics and Public Sphere in North India: Making of the Maithili Movement, n.d; Robert D.
King, Nehru and the Language Politics of India, n.d.

 Anushah Hossain, “Remembering East Pakistan,” The Bengal Gazette (blog), July 31, 2020, https://bengalgazette.org/27

2020/07/31/remembering-east-pakistan/.

13

https://doi.org/10.1163/24519197-12340051
https://bengalgazette.org/2020/07/31/remembering-east-pakistan/
https://bengalgazette.org/2020/07/31/remembering-east-pakistan/

to scholarship on the social place of linguistic expertise, particularly in the digital age. This is a
nascent area of research within the field of sociolinguistics.

Sociolinguistics scholarship on the internet has most often focused on the concepts of language
change, language loss, and language regimes. The largest body of scholarship at this intersection
explores the impact of the internet on language, and specifically on language change and
language regimes. This sub-field, termed “internet linguistics” by David Crystal, examines how
features of language – the orthography, grammar, vocabulary, phonetics, etc – change due to the
internet. Crystal initially used a technological deterministic view to consider whether there 28

existed an internet-specific language, “Netspeak,” that followed new linguistic conventions. He
found that indeed, the medium of the internet tended to change written communication, but that
different regimes were emerging on different platforms. The linguistic conventions for email
were different from chat boards, for example. And contrary to the moral panic gripping the 29

public in the early days of the Web, established regimes of spelling and grammar could continue
to exist off the internet – formal writing would not experience widespread decay. 30

Sociolinguists have since moved away from the deterministic framing of Crystal's work and have
considered instead how Netspeak transforms along gender, racial, class, and geographic lines —
essentially interrogating the role of culture in mediating technology. 31

The concept of language loss has also featured prominently in the literature on language and the
internet. As Kornai writes, “biological metaphor of viewing languages as long-lived organisms
goes back at least to Herder [writing in 18th century]”. Paolillo and Pimienta, and Kornai have 32

both presented frameworks for measuring linguistic diversity in the internet, transferring the
analog concepts of speaker population to online population, and vigorous oral use to vigorous
online use. These frameworks respond to the popular claim that English will supersede other 33

languages in digital space, and that minority languages will face “digital language death.” The 34

metrics for digital vitality have slowly expanded as researchers have taken a more holistic view
over time, ranging from availability of Wikipedia pages in one’s language, to the presence of
internationalized domain names, the availability of fonts and keyboards, and mature natural

 David Crystal, Language and the Internet (Cambridge: Cambridge University Press, 2001), https://doi.org/10.1017/28

CBO9781139164771.

 Ibid.29

 Ibid.30

 Globalization of Language and Culture in Asia: The Impact of Globalization Processes on Language, ed. Viniti Vaish (A&C Black, 31

2010); Susan E. Cook, “New Technologies and Language Change: Toward an Anthropology of Linguistic Frontiers,” Annual Review of
Anthropology 33, no. 1 (2004): 103–15, https://doi.org/10.1146/annurev.anthro.33.070203.143921.

 András Kornai, “Digital Language Death,” PLOS ONE 8, no. 10 (October 22, 2013): e77056, https://doi.org/10.1371/32

journal.pone.0077056.

 Ibid; John C. Paolillo and Daniel Pimienta, “Measuring Linguistic Diversity on the Internet,” 2005.33

 Kornai 2013.34

14

https://doi.org/10.1371/journal.pone.0077056
https://doi.org/10.1371/journal.pone.0077056
https://doi.org/10.1146/annurev.anthro.33.070203.143921
https://doi.org/10.1017/CBO9781139164771
https://doi.org/10.1017/CBO9781139164771

language processing tools. Recognition of the disparities between languages along these lines 35

has led to the defining of new terms such as “digitally-disadvantaged languages” – languages that
may suffer from a dearth of digital communication tools and content, regardless of their status as
majority or minority language outside of digital space. 36

But returning to our interest in the social place of linguistics expertise, the most pertinent
sociolinguistics concepts for this dissertation are language planning and language standardization.
Language planning refers to allocation of state resources towards the elevation and refinement of
languages and their scripts. Standardization – of grammar, letterforms, spelling – is one aspect 37

of language planning. The seminal work bridging traditional language planning with the digital 38

environment is David K. Jordan’s 2002 article, “Languages left behind: Keeping Taiwanese off the
World Wide Web.” Jordan argued that Unicode depended upon a source base of formalized 39

scripts that it would then encode. “Unorthodox, unstable, or unofficial scripts”, such as those
used for Taiwanese dialects, were at risk of falling off the Internet, as Unicode would not be able
to accommodate them. He posed,

When the new global standard is finally fully in place, when our operating systems are
finally Unicode-based and our browsers and word processors routinely provided with full
Unicode type fonts that offer Burmese and Russian and Arabic and Mongol on the same page
(a moment that has already arrived for some of us), will it be too late to stabilize a new
writing system for Hokkien? Will the age of innovative Chinese (and other) orthographies
have drawn to a close? Will we have standardized at least some orthographies, perhaps some
languages, into corners as curiosities that cannot be seriously used in a world in which
literacy has become intimately bound to electronic information flow? 40

Not much has been written on the implications of Unicode on linguistic innovation since Jordan’s
piece. Of note, Jordan published in 2002, upon the recent release of Unicode 3.0 and the first
wave of widespread adoption amongst “operating systems…and browsers and word processors.”
The events of this dissertation occur just after Jordan’s time of writing and seek to answer many
of his questions. I consider the extent to which instability is accommodated and scripts are
permitted to innovate within Unicode in Chapter 4.

 Pratik Joshi et al., “Unsung Challenges of Building and Deploying Language Technologies for Low Resource Language 35

Communities” (arXiv, December 7, 2019), http://arxiv.org/abs/1912.03457; Richard Littauer, “Open Source Code and Low Resource
Languages” (Saarland University, 2018).

 Isabelle A. Zaugg, Anushah Hossain, and Brendan Molloy, “Digitally-Disadvantaged Languages,” Internet Policy Review 11, no. 2 36

(April 11, 2022), https://policyreview.info/glossary/digitally-disadvantaged-languages.

 “Language Policy and Planning,” obo, accessed June 29, 2022, https://www.oxfordbibliographies.com/view/document/37

obo-9780199772810/obo-9780199772810-0273.xml.

 “Language Standardization,” obo, accessed June 28, 2022, https://www.oxfordbibliographies.com/view/document/38

obo-9780199772810/obo-9780199772810-0250.xml.

 D.K. Jordan, “Languages Left behind: Keeping Taiwanese off the World Wide Web,” Language Problems & Language Planning 26, no. 39

2 (August 1, 2002): 111–27, https://doi.org/10.1075/lplp.26.2.02jor.

 Ibid, 121.40

15

https://www.oxfordbibliographies.com/view/document/obo-9780199772810/obo-9780199772810-0273.xml
https://www.oxfordbibliographies.com/view/document/obo-9780199772810/obo-9780199772810-0273.xml
https://www.oxfordbibliographies.com/view/document/obo-9780199772810/obo-9780199772810-0250.xml
https://www.oxfordbibliographies.com/view/document/obo-9780199772810/obo-9780199772810-0250.xml
http://arxiv.org/abs/1912.03457
https://doi.org/10.1075/lplp.26.2.02jor
https://policyreview.info/glossary/digitally-disadvantaged-languages

Most of the key concepts from sociolinguistics (beyond linguistic innovation) have just begun
being translated, reinterpreted, or theorized from scratch for digital environments. That which
does exist focuses primarily on the East Asian context, as in Jordan’s work, and comments on the
specific governance structures for East Asian scripts and on regional competition between those
nation-states. Zhao’s article, “Flows of Technology: Mandarin in Cyberspace” also used the
framework of language planning to evaluate reactions amongst East Asian countries to
Unicode. China, which was seeking modernization and standardization, welcomed the work of 41

Unicode’s East Asian script committee. Japan, on the other hand, was displeased with the same
committee’s efforts as it had already completed script standardization and developed its own
Unicode competitor. Tsu explains part of the discomfort with Unicode experienced by East Asian
countries. Because additional script standardization needed to take place to prepare East Asian
ideographs for Unicode encoding, a script committee was formed to perform this task, called the
Ideographic Research Group (IRG). As Tsu writes, “Even though the IRG is made up of mainly
computer engineers and scientists, they find themselves having to take on a Sinologist’s or
linguist’s work.” 42

This dissertation analyzes how the regional dynamics, legacies of language planning, and
linguistic structures of South Asia’s scripts are brought forth into the digital age — revealing
models of engagement between linguistic authorities and the Unicode Standard that greatly
diverge from the East Asian model. Instead of inter-region or inter-script competition, we see
South Asian officials grapple with unifying and enriching a conflict-ridden, poor nation inherited
at independence. This case offers the field of sociolinguistics an example of what a postcolonial,
digital language politics might look like.

Methods: Sources and Analysis

This dissertation takes an approach to the study of technology similar to those found in media
studies, in which I examine an assemblage of standards, formats, and technologies that are
ultimately packaged into one medium for users: digital text. Studies conducted in a similar vein
include Sterne’s MP3: The Meaning of a Format and Smith’s A Biography of a Pixel, that focus on
digital sound and digital images respectively. 43

There is a vast infrastructure that supports digital text, and it can be difficult to scope and study.
As Star and Ruhleder wrote, infrastructure typically exists in the background, it is invisible, and it

 Shouhui Zhao, “Flows of Technology: Mandarin in Cyberspace, “ in Globalization of Language and Culture in Asia: The Impact of 41

Globalization Processes on Language, ed. Viniti Vaish (A&C Black, 2010).

 Jing Tsu, Kingdom of Characters: The Language Revolution That Made China Modern (Riverhead Books, 2022).42

 Jonathan Sterne, MP3: The Meaning of a Format, (Durham: Duke University Press Books, 2012); Alvy Ray Smith, A Biography of the 43

Pixel (Cambridge, Massachusetts: The MIT Press, 2021).

16

is frequently taken for granted. At the same time, one of the practical methods for observing its 44

design and maintenance is through observing moments of breakdown. 45

The subjects of my study are the stakeholders involved in the “breakdown” of khanda ta. They
roughly fall into the categories of programmers, linguists, typographers, and policy makers,
though in most cases each person wears more than one of those hats. More specifically, my
subjects include members of the Unicode Technical Committee, or “UTC”; representatives from
software companies like Microsoft, who are deploying the Standard and providing feedback at
Unicode meetings; and government officials, academics, and software hobbyists who are also
drawn into the discussions. I identified my sample through snowballing, beginning with Bangla
software hobbyists and expanding from there to identify all the technical experts involved in
Bangla language digitization. I collected oral histories from each subject, lasting between 1-2
hours, amounting to 36 interviews in total. I typically conducted interviews with Bangla speakers
in Bangla, which I then translated into English; all other interviews were conducted in English.
Oral histories were a valuable data source, as the events at hand were recent enough to remain
in the memory of my participants, but were only partially documented in public archives. Oral
histories were most essential for tracing out the development and motivations behind the
OpenType format, for which there is a surprising dearth of information despite its importance to
modern typography.

There were several large digital archives that also served as data sources for this project. I made
use of well-kept Unicode meeting notes and technical documentation, which are publicly
available on the Unicode Consortium’s website. I also accessed documents from the Government
of India’s Ministry of Information Technology website, which stores newsletters and agendas
from the year 2000 onward. Most importantly, I collected messages posted across several public
mailing lists from the early 2000s, including the main Unicode list; the Unicode “Indic list,”
which discussed issues specific to Indic scripts; and three software hobbyist groups called “indic-
computing”, “Bengalinux/Ankur”, and “freebanglafonts”. Though these lists were all once public,
some have since been hidden from public view by the list administrators; in these cases, I
requested access and downloaded the materials for analysis. The number of messages posted to
each of these lists numbered in the thousands. I reviewed each archive exhaustively, except for
the main Unicode list, where I queried only for Bangla-related posts.

Following a networked/snowballing approach for my written sources as well, I looked for
personal blogs and project websites that were mentioned in the oral histories or email archives.
In most cases, the websites were no longer live, so I relied on snapshots stored within the
Internet Archive’s Wayback Machine. This public archive proved to be an invaluable resource for
excavating this history of the early Web.

 Susan Leigh Star and Karen Ruhleder, “Steps Toward an Ecology of Infrastructure: Design and Access for Large Information 44

Spaces,” Information Systems Research 7, no. 1 (March 1996): 111–34, https://doi.org/10.1287/isre.7.1.111.

 Susan Leigh Star, “The Ethnography of Infrastructure,” American Behavioral Scientist 43, no. 3 (November 1, 1999): 377–91, 45

https://doi.org/10.1177/00027649921955326.

17

https://doi.org/10.1287/isre.7.1.111
https://doi.org/10.1177/00027649921955326

I analyzed all of the data sources above using MaxQDA, a qualitative data analysis (QDA)
software application. I used an unstructured, interpretivist approach to first code all of the
materials for recurring themes, projects, and organizations, producing over fifty codes. I re-coded
to refine and organize the codes into easy-to-reference categories for the writing stage.

Figure 7. Data Coding Scheme

18

Though the sources used in this study have generally been public to view and download (or
accessed with disclosure about the intent of this study), they reference individuals who are still
alive, and in many cases, continue to work professionally in the same industry. We should take
particular care in interpreting their communications, as they were produced at a time when the
vast audience of the modern Web was not wholly conceivable. Despite their ‘public’ status, I
caution that the spaces and discussions I document are better understood as ‘private’ (though not
‘secret’), with their own norms and rules that observers such as ourselves should make an effort
to understand. I use names and quote directly from web archives throughout this work, with the
understanding that the reader will take care to heed the context in which these communications
were produced.

Key terms

There are a handful of terms used throughout this text that will be helpful for readers to grasp
before we proceed. First, I want to distinguish the terms “language” and “script.” Broadly,
language is a method of communication; we often use it to mean spoken or signed
communication. To write down a language, one needs a script, or writing system. Scripts contain
the letters, numbers, and other symbols needed to graphically represent a language. When
conventions, such as spelling and grammar, are developed for a script, that system is called an
“orthography.”

The Unicode Standard at the center of this work digitizes scripts, not languages. A script can be
used for more than one language; a language can also use more than one script. Unicode aims to
encode the minimum number of scripts to support all of the world’s languages. This means, for
example, that Unicode encodes the Latin script, rather than the English or Swedish languages
(both of which use the Latin script).

Second, I want to distinguish some similar but contrasting terms from linguistics, typography,
and software internationalization that refer to the building blocks of writing systems: “letter,”
“glyph,” “grapheme,” “ligature,” and “character” and “codepoint.” Perhaps the most familiar
of these is the letter, the units that make up an alphabet. Grapheme is a similar term from
linguistics that refers to the smallest units of the entire writing system. This includes letters, but
also numbers and punctuation, as in the Latin capital letter A shown in row 1 of Figure 8.

Graphemes can be represented visually in more than one way – changing the visual design but
not the underlying meaning, or “semantics.” For example, the vowel grapheme or letter a can be
drawn in the following ways. These different visual representations are called glyphs, and are a
term used predominantly in typography. Typefaces for a single script can have different glyphs,
but represent the same graphemes, as in row 3 of Figure 8.

19

Figure 8. Glyphs and Characters (Source: the Unicode Standard V.1)

When some graphemes show up next to each other in words, they take on new combined glyphs
called ligatures, as in the fi ligatures shown in row 2 of Figure 8. Ligatures are also a
typographic term and again represent a visual or stylistic difference, rather than a change in
underlying semantics.

Next, there is a more abstract concept defined by the software internationalization sector, called
“characters.” What are characters? They roughly map onto graphemes; here is the term as it
appears in the Unicode glossary: 46

It is contrasted directly against glyph – Unicode famously encodes only characters, not glyphs,
so as not to bloat the Standard (there is no finite number of glyphs).

Finally, I introduce another term from software internationalization: the codepoint. Codepoints
are unique numbers assigned by Unicode to each character in the standard. Things get confusing
when we see that not all graphemes are assigned single codepoints; they may instead be assigned
a codepoint sequence, or multiple codepoints that computers must be programmed to recognize as
a single grapheme. Here, the correspondence between graphemes and characters begins to falter.
Users and engineers may have incompatible understandings of what it means for a grapheme to
be “in the Unicode Standard.” A user may not see it in the list of assigned codepoints, but the
engineer may see that it has nonetheless been assigned a codepoint sequence that is hidden in

 “Glossary,” accessed June 28, 2022, https://unicode.org/glossary/.46

20

https://unicode.org/glossary/

the documentation. These nuances and inconsistencies are important to keep in mind as they
provide some of the fuel behind khanda ta’s fire.

Chapter Roadmap

Over the course of five chapters, this dissertation traces the evolution of the debate around how a
single Bangla letter appears online. Each chapter advances the story incrementally, moving
through the 1990s when the standards for multilingual text are developed, and settling in the
early 2000s when those standards are being refined through debates like this one. Each chapter
also focuses on one set of actors, from the technical designers of the Unicode Standard and
OpenType format in Chapter 1, to software hobbyists who are beginning to implement these
standards in Chapter 2, to government officials promoting plans for local-language technologies
in Chapter 3, to industry actors again in Chapter 4, and finally academic linguists in Chapter 5.
The conclusion provides a final verdict on khanda ta.

Language digitization is complex and interdisciplinary, bringing in many different fields of
expertise and motivations. I tease out the various sets of motivations in each chapter – from
business interests, to the open source ethic, to national pride, to academic rigor – that drive the
debate forward. The advantage of this slow crawl towards a decision around khanda ta is
demonstrates how standards are truly made, and how easily the narrative and foci of power can
shift during the decision-making process. We see how the decision over a single letter can
become inflamed and turn into a high-stakes tussle in which forms of technical and cultural
expertise and the hierarchy of nation-states are challenged.

As Joe Becker, one of the founders of Unicode, once wrote, “The many aspects of text character
encoding are highly interrelated, and indeed each topic is best conceived in terms of a conception of
all the others. Lacking hypertext or the ability to discuss all topics at once, the document is arranged
as follows:” 47

Chapter 1: Assembling The Multilingual Internet provides a history of multilingual text
through the second half of the 20th century. The reader becomes acquainted with what I call “the
multilingual computing stack,” the set of standards and technologies that layer atop each other
to facilitate multilingual digital communication, from the Unicode Standard, to font technologies,
to layout technologies that ensure text is displayed properly on screens. The main characters of
this chapter are the engineers who set about developing the core standards that ensure
multilingual text works on any machine, anywhere in the world: the designers of the Unicode
Standard, and the designers of an equally important font format called the OpenType format. I
chronicle the technological and economic context that drove their decision-making, from limits
on the processing power of personal computers, to the needs of the two most important markets:
Latin script users and East Asian script users.

 Becker, Joseph D., “Unicode 88,” August 29, 1988, https://unicode.org/history/unicode88.pdf.47

21

https://unicode.org/history/unicode88.pdf

I show how the design of the multilingual computing stack that emerges disadvantages Indic
script users. The logic of the Unicode Standard makes it relatively easy to design working fonts
for Latin and East Asian scripts, but frustratingly difficult for Indic scripts where letters and
glyphs do not have a 1:1 correspondence. As a result, several other technologies (such as the
OpenType format) must be developed to ensure Indic scripts work properly, which only begin
being developed at the turn of the millennium. I recount this history to establish the uphill battle
that Bangla script users would face in the coming years, as they struggle against the systemic bias
written into the Unicode Standard.

Chapter 2: Building Bangla Software provides a social history of Bangla-language software. I
focus here on Bangla software hobbyists, who began building out the rest of the multilingual
computing stack – fonts, keyboards, localized software applications – when they felt no one else
was doing it. I demonstrate how these software hobbyists embody the “open source ethic” - to
share work freely, not ask for permission, and build with whatever is at hand. Even as issues with
khanda ta arose in the view of these groups, it was largely treated as a bug that they could easily
build hacks around, a contrast to the stakeholders presented in later chapters for whom the issue
carries additional weight. I begin the chapter in 2002, when the most prominent Bangla software
group, Bengalinux, was formed. The Unicode Standard and OpenType format have launched but
have yet to gain widespread recognition and adoption in South Asia. Local stakeholders working
on language technologies – industry professionals, academic researchers, and government
officials – remain ignorant or opposed, and continue to work in non-standard formats that inhibit
widespread communication. Major companies such as Microsoft have not yet released their
Bangla-language operating systems. I show how the Bangla software hobbyists work to advance
the tools and standards they believe will define the future of digital communication, positioning
themselves between the worlds of a elite, global software industry, and what they perceive to be
inward- and backwards-looking South Asian governments.

Thus far the featured actors have been software engineers – whether those working for major
western corporations or those working independently on open source software. In Chapter 3:
Digitizing Language Planning, the perspective shifts to South Asian government officials, for
whom language technology is explicitly tied to national pride and economic development. I
present the philosophies and communications of leaders from India’s Technology Development
for Indian language (TDIL) program, which began forging a strong relationship with the Unicode
Consortium in 2003. I show how TDIL’s activities are best understood as an extension of the
postcolonial practice of language planning, in which the state directs resources to promote
languages and scripts in public space, such as in schools, on road signs, and in the media. For
language planners, the issue of khanda ta is best understood as a “missing letter,” with
implications for the status of the Bangla language, rather than a technical bug as the software
hobbyists viewed it. In the emerging internet age, however, several shifts have occurred: the
public space is digital space, mono-lingual regimes have given way to multilingualism, and
language planners must have technological as well as linguistic expertise. I show how India’s
TDIL program represents a new iteration of language planning, which must calibrate itself to the
norms of emerging internet governance institutions such as the Unicode Consortium. Signed
government letters and diplomatic visits to California do not hold the same weight as the

22

informal, technical argumentation that will emerge from non-government actors in the following
chapters.

Chapter 4: Accommodating Orthographic Reform carries forward the sociolinguistics lens of
language planning, but hones in one aspect of it: orthographic reform, or state-sanctioned
changes to writing systems. The events of this chapter take place in Unicode mailing list, where a
range of orthographic reforms to Bangla is being discussed. We turn our eyes towards a set of
intermediary actors, linguists-turned-technologists who are responsible for interpreting the
Unicode Standard and implementing it in downstream software, such as rendering engines. I
walk through four increasingly difficult demands that are made of the multilingual computing
stack concerning the Bangla language. To what extent do these technologies and standards serve
as enabling or limiting systems? Bringing together the frames of orthographic reform and techno-
politics, I argue that the designers of the multilingual computing stack ultimately view
themselves, and generally act in such a way, as to be agnostic accommodators of orthographic
reform. Their goals are to understand the qualities and evolutions of a writing system, and
translate them as best as they can to the digital medium. The question these technical
“translators” ask is often how, rather than if a linguistic feature should be accommodated. This
self-view becomes important to keep in mind as we progress to the next and final chapter, where
the multiple perspectives and stakes presented throughout this dissertation finally converge.

Finally, I end with Chapter 5: The Battle over Khanda ta. Present in this chapter is the suite of
actors introduced in previous chapters, as well as the new addition of academic linguists, who
are historically the gatekeepers of orthographic reform. To them, it feels as though the very
language itself is being compromised, not merely its digital encoding. We follow an increasingly
contentious showdown between Bengali linguists and Western technocrats, in which the stakes of
khanda ta’s encoding rise from disrespect towards linguistic expertise to neocolonialism
perpetrated by Silicon Valley elite against non-English users. This chapter brings to the fore the
emotional valences that simmered under the surface of previous chapters, and we see how the
explicit expressions become productive in the fight to get khanda ta encoded.

The final chapter, Khanda ta, encoded concludes the story of khanda ta by relaying the verdict
made by Unicode with respect to its encoding. I trace the implications of this wide-ranging and
long-standing debate for each group of actors presented in previous chapters: the designers of
the Unicode Standard, Bangla software hobbyists, government officials overseeing language,
technology, and development, and linguistic experts. Khanda ta becomes a hallmark decision that
begins to shift Unicode’s treatment of all Indic scripts, it becomes a small victory for the software
hobbyists and linguists, and convinces the Bangladeshi government to follow India’s lead and
begin direct engagement with the Unicode Consortium.

—-

Though the issue of khanda ta was resolved in 2005, it did not fall from popular memory. The
story of khanda ta would be remembered and misremembered for many years. Bengali
technologists recalled it as the critical episode that guaranteed the preservation of their language

23

online. Unicode staffers would offhandedly mention it in meetings as late as the year 2020,
symbolizing, for some, a time when “mob mentality” won out.

A viral blog post in 2015 was still criticizing the Unicode Consortium for its handling of khanda
ta, and non-Latin scripts more broadly, whose users were “forced to make orthographic
contortions just to write a simple email.” Though the blog post made mistakes in how the 48

Unicode Standard worked (mistakes that were corrected generously in the many comment
sections of the forums where the blog post was shared), it noted accurately that Unicode
membership was “comprised largely of white men (and a few white women) whose first
language was either English or another European language.” The author argued, “it’s 49

imperative that the writing system of the 21st century be driven by the needs of the people using
it. In the end, a non-native speaker – even one who is fluent in the language – cannot truly speak
on behalf [sic] the monolingual, native speaker.” 50

As this dissertation shows, none of these points are wholly true on their own. What appears at
first glance to be a characteristic example of systemic bias gives way upon further investigation
to complicated issues of digitizing a language whose alphabet is still being reformed, of
distributing responsibilities between layers of a newly emerging ‘multilingual computing
stack’ (of which the Unicode Standard is only one element), and of incorporating feedback from
new multitudinous channels of feedback from user communities across the Internet.

For the non-technical reader, perhaps the historians, anthropologists, and sociologists of
language or technology, my goal is to provide a thorough, empirical case study to help generate
new hypotheses about the power structures of the modern Internet, the legacy of the nationalist
South Asian development state, and the nature of language planning and standardization. I hope
the findings that are surprising: Microsoft’s productive role in expanding software
internationalization; the push against Nehruvian ideas of state-led modernization; the absorption
of language planning into technical rather than linguistic government agencies; and more. I work
to contextualize the Internet not as a ground-breaking new paradigm, nor the teleological
progression of the past, but as a dynamic space for encounter between the analog and digital
worlds.

For the technical reader, this study is intended to concretely illustrate what is meant by the
phrase, “code is political.” The technical reader is likely to have found themselves reading
through Unicode specifications at some point in time, trying to figure out how to get an edge
case to work. Edge cases by definition are the situations that have not been addressed by the
general model, divergences from the norm that hardly come up. It can be unclear how much the
individual decision one makes in those cases matters. This story is about what happens when we
look closely at an edge case, and suddenly discover there is a community of millions for whom

 Mukerjee, Aditya, “I Can Text You A Pile of Poo, But I Can’t Write My Name,” Model View Culture (blog), March 17, 2015, https://48

modelviewculture.com/pieces/i-can-text-you-a-pile-of-poo-but-i-cant-write-my-name.

 Ibid.49

 Mukerjee 2015.50

24

https://modelviewculture.com/pieces/i-can-text-you-a-pile-of-poo-but-i-cant-write-my-name
https://modelviewculture.com/pieces/i-can-text-you-a-pile-of-poo-but-i-cant-write-my-name

the outcome of one’s coding decision matters. There are long histories and deep values
embedded in code, and this study excavates them for the Unicode Standard. This study shows
the layers of bias built into the Standard, at the level of West versus the rest, but also at the
regional level of Indic scripts and languages. We see how groups are privileged – exceptions for
some, hard rules for others – and how outsiders must struggle to fit a system that was not
designed around their needs. This case study also shows how user activism and user perceptions
are consequential to changing the values embedded in such a system. In our current moment of
rising tech activism, I hope this case is informative and instructive for those looking to make
change.

25

Chapter 1: Assembling the Multilingual Internet

“It seems the developers of the computer and of word-processing software were coddled by the English
language, which happens to have the simplest writing system of all: unadorned alphabetic letters laid
out one after the other.”

So wrote Joe Becker, a founder of the Unicode Standard, in an article on “Multilingual Word
Processing” for Scientific American in 1984. Indeed, the Latin script, used for writing the English 51

language as well as others including German, French, and Vietnamese, was relatively simple in
structure. There was a finite number of letters of the alphabet, which appeared in roughly
consistent ways, and a handful of punctuation marks and numerals. A computer could store the
entire writing system in an “8-bit encoding,” or a table with 256 rows with information on each
letter, number, and mark.

For much of the early digital computing era, from the 1960s to 1990, computers worked with 8-
bit encodings, and the American 8-bit encoding (“ASCII”) in particular. But the world’s writing
systems could not fit easily into this scheme. As computer suppliers began to eye international
markets, and international markets expressed interest in purchasing computers, new ways to
handle text needed to be invented.

This chapter traces the development of the set of technologies that eventually fulfilled that need.
I tell the story of the Unicode Standard, the bottom layer of what I call the “multilingual
computing stack.” The term “stack” is commonly used in the computer networking literature to
refer to the layered standards, protocols, and technologies that constitute our modern internet.
The layers of a stack are modular but interdependent — each element has its own rules and
procedures, but these rules and procedures must be communicated to and negotiated with the
other elements. 52

The history of the Unicode Standard has not yet been told from the perspective of Indic scripts.
This vantage point is critical to understand because it best highlights the limitations of this
standard, limitations that affect the digitization of scripts for nearly two billion people. In the
following chapter, I describe how Unicode intended to handle Indic scripts: primarily through
delegation to other layers of the multilingual computing stack. This act of delegation introduces
a wider surface area for bugs (as the remainder of this dissertation shows) and releases the
overseers of the Unicode Standard from responsibility for proper display of Indic scripts.

The second half of this chapter traces the development of the technical layer that augments the
Unicode Standard and is most important for Indic script display: the OpenType font format. I
argue that the OpenType format was equally critical as Unicode for displaying Indic scripts. The

 Joseph D. Becker, “Multilingual Word Processing,” Scientific American 251, no. 1 (1984): 96–107.51

 Benjamin H. Bratton, The Stack: On Software and Sovereignty, 1st edition (Cambridge, Massachusetts: The MIT Press, 2016), 52. 52

26

development of the OpenType format, and its attention to Indic scripts, has not yet been
documented in the scholarship. I present it now, drawing from new oral histories with its
developers. In sum, this new technical history of the digital text highlights the points at which
Indic scripts received attention: as afterthoughts, in secondary layers. As the story of the Bangla
letter khanda ta advances in the following chapters, we see how the consequences of Unicode’s
early design decisions play out and create an uphill battle for digitizers of Indic scripts.

Understanding the Multilingual Computing Stack

I begin first by describing the set of tools that constitute the modern “multilingual computing
stack.” This framework draws on several precedents: Becker (1984) first articulated the three
functions that a computer needed to perform: encoding, or a way for text to be represented in the
memory of a computer, typing, a way for text to be typed at the keyboard of a computer, and
rendering, a way for the computer to present text to the typist. These functions were expanded 53

upon and connected to specific technologies and standards by Loomis et al (2017). A similar 54

framework has also been articulated in Translation Commons’ digitization guide, “Zero to
Digital” (2019). I present a simplified version of Loomis et al (2017) model, selecting the 55

components without which multilingual digital communication cannot proceed. 56

At the lowest level is the encoding standard, which transforms text into bytes that a computer
can understand. Encoding standards are important for internal processing and for transmission. 57

That is, an encoding standard tells computers how to process text (“internal processing”) and lets
a network of computers interpret the text sent between them, as they are all following the same
set of rules (“transmission”). As such, encoding standards can be seen as a convergence of
computing and communications. These two functions have not always been intertwined; for
example, though ASCII reigned as a communications standard in the 1960s, it was not always
used for internal processing in computers. The Unicode Standard was designed to be amenable 58

to both processing and exchange, goals which had implications for its design. 59

 Becker, “Multilingual Word Processing.”53

 Steven Loomis, Anshuman Pandey, and Isabelle A Zaugg, “Full Stack Language Enablement,” Steven R. Loomis, June 6, 2017, 54

https://srl295.github.io/2017/06/06/full-stack-enablement/index.html.

“ Indigenous Languages Zero to Digital.Pdf,” Translation Commons, accessed June 29, 2022, https://drive.google.com/file/d/55

1zpZK3jfF3bDt2e5YnEw8FXSkYXSRefKu/view?usp=embed_facebook.

 Loomis et al include “final frontiers” such as the availability of computer programming languages in one’s mother tongue56

 “Bits” are 0s or 1s that serve as data that a computer can process. A “byte” is eight bits in a row, for example 00000000 or 57

00101100. If a table of data is 8-bits, or 1-byte, then that means that it can fit 256 rows of information. This number (256) comes
from the maximum combination of 0s and 1s that fit into eight spots (2^8 = 256).

 Computers are most efficient at processing information structured in bytes (or eight bits), for example. The first version of ASCII 58

was a 7-bit standard, which was suboptimal for internal processing. See “Early History of ASCII?,” accessed June 29, 2022, https://
groups.google.com/g/alt.folklore.computers/c/gbg5YVFaT48/m/wlVFfJ2j4hYJ; Steven J. Searle, “Brief History of Character Codes in
North America, Europe, and East Asia,” TRON Web, 1999, http://tronweb.super-nova.co.jp/characcodehist.html#anchor953122.

 Becker, Joseph D., “Unicode 88,” August 29, 1988, https://unicode.org/history/unicode88.pdf.59

27

https://unicode.org/history/unicode88.pdf
https://srl295.github.io/2017/06/06/full-stack-enablement/index.html
https://groups.google.com/g/alt.folklore.computers/c/gbg5YVFaT48/m/wlVFfJ2j4hYJ
https://groups.google.com/g/alt.folklore.computers/c/gbg5YVFaT48/m/wlVFfJ2j4hYJ
http://tronweb.super-nova.co.jp/characcodehist.html#anchor953122
https://drive.google.com/file/d/1zpZK3jfF3bDt2e5YnEw8FXSkYXSRefKu/view?usp=embed_facebook
https://drive.google.com/file/d/1zpZK3jfF3bDt2e5YnEw8FXSkYXSRefKu/view?usp=embed_facebook

Encoding standards have primarily been oriented around sending semantics across network lines
– the abstract ideas of letters. One example is early telegraph codes such as Morse code. These 60

would send codes that represented letters like an ‘a’ or punctuation such as a period, rather than
information about the appearance of a letter — whether it should be boldface or italic or serif or
sans serif.

Modern computers with screens need more information than the semantic encoding alone to
represent text appropriately to the user. Towards this purpose, they need digital fonts. Digital
fonts contain visual information for each letter. They turn text into images. The history of fonts
over the late 20th century is a story of how the typography industry – traditionally concerned
with the aesthetics and legibility of text over physical media – has become entangled with the
computing industry. As a result, type has transformed into ‘information’ and come to be modeled
and manipulated by software. Digital fonts can be seen, then, as a convergence of computing and
display. I trace this particular evolution below in the section on “Digital Type.”

The third critical piece of technology needed for multilingual computing is the input method,
typically a keyboard, that triangulates between the encoding standard, user, and font, to produce
text. Virtual keyboards are relatively simple to build, but hard to get right; user preferences also
vary widely. As a result, there is a high proliferation of keyboards designed to various 61

specifications. Though they are critical for the user, they feature in only limited ways in this
dissertation, due to their relative distance from the standards at the center of this work.

For Latin scripts, these core pieces are enough to produce, display, and transmit text across the
Internet. Granted, operating systems and applications need to also be able to support these
pieces — the encoding standard, digital fonts, and keyboards — and much of the following story
in the 1980s and 90s is about computer companies falling in line and adopting common
standards. But with these basic tools in place, it becomes possible to perform higher-level
commands such as text search, word processing, spell check, and even optical character
recognition (OCR).

For Indic scripts, however, a critical other piece of software is needed: specialized software for
– rendering or doing appropriate display. Unlike the Latin script, Indic scripts are made of letters
that can appear in completely different visual forms depending on what other letters are next to
them.

Consider the Bangla script as an example. The Bangla alphabet has fifty letters — 39 consonants
and 11 vowels. But vowels can appear in independent and dependent forms. Consonants can
combine with each other when next to other consonants, sometimes resulting in three or four
letters combining into one graphical unit, called a “conjunct.” The total set of combinations is

 Searle, “Brief History of Character Codes in North America, Europe, and East Asia.”60

 Apple employee, interview with author, March 3, 2022.61

28

neither standardized nor finite; estimates of the total number of visual units in Bangla range
from 300 to 800.

A font can be designed to contain all of these possible “glyphs” (the various visual forms of the
writing system), but if an encoding standard only contains semantics, it becomes unclear what
visual to display. If a computer only has the information that the Bangla consonant ra was typed,
how will it know which if the following three visual forms it should display?

Figure 9. Glyph Variants of Ra

A piece of software must therefore work with the encoding standard and font to interpret what
graphic to display based on the context. This technology is called a “text rendering engine,” and
its role is essential not only for Bangla, but all Indic scripts. Not only does this contextual
difference between letters and glyphs occur in Indic scripts, but also for Arabic scripts. Together,
these two script families (Arabic and Indic) are termed “complex scripts” by the software
internationalization industry, due to the additional work that must be done to display them
correctly. The implicit “normal” assumed by this term (“complex script”) is, of course, the Latin
script, which does not become illegible without sophisticated text rendering. The following 62

sections illustrate how the notion of complex scripts came to be, beginning with the design of the
Unicode Standard.

The Unicode Standard

The most widely implemented encoding standard in use today is the Unicode Standard, a scheme
that aims to assign a unique code point for every unique semantic unit of all the world’s scripts.
As we will see, encoding semantics was not the only possible design principle, but it was the
scheme promoted by Unicode and that which gained wide adoption leading into the new
millennium.

At the time of Unicode’s development in the late 1980s and first release in 1991, several
individual character codes were in circulation globally. These were specific to different software
vendors and to different languages. For example, IBM had its own standard called EBCDIC; the

 This is, of course, a matter of perspective. As one software engineer opined to me, “I learned Devanagari growing up, and it never 62

seems complex to me. A lot of the complex comes from the lens you view it with, the way it’s treated by technology.”

29

United States had the popular ASCII standard; Japan had JIS. There were also competing 63

efforts to create a single universal standard that combined them all. These efforts towards
unification were motivated by two important recognitions.

Firstly, a world of multiple conflicting standards would make displaying text slow and buggy at
best, and illegible at worst. This was due to the lack of uniqueness in the assigning of 64

codepoints. If a document was produced on a machine following an American encoding scheme
where 001 was assigned to ‘a’ and opened on another machine where the native encoding
scheme assigned 001 to the Latin letter ‘p’ the Japanese character ‘は’ then the text would
become garbled on that machine.

Workarounds for this frequently occurring confusion were developed by the International
Organization for Standards (ISO) in 1987, to instruct computers how to switch between different
encodings. ISO 2022 established “switch codes” which would flag when a new encoding scheme
was being introduced. Over fifteen country-specific schemes (most of which were variations on 65

the 7-bit American standard, ASCII) could now be used across computers that were configured to
understand ISO switch codes. 66

The problem with switch codes, however, was that they proved troublesome for word processing.
A cursor selecting a letter to copy could only produce the same letter upon paste if the computer
internally stepped back in the text to first find the relevant switch code. If one highlighted the 67

letter ‘a’ that was mapped onto 001, how would the computer know if the 001 was from the
American encoding scheme or the Swedish one? It would have to check its memory for the
relevant switch code. This process made word processing time-consuming and error-prone. More
challenges arose when handling “variable-width” schemes, as in documents using both Latin 8-
bit and East Asian 16-bit encodings, as the machine could not count on characters having
consistent lengths. Simple functions, like knowing that deleting 8-bits would effectively erase 68

one letter, could not be easily done.

In addition to these technical difficulties, the computing industry was increasingly cognizant of a
coming era of increased globalization, where documents, emails, and software would need to
travel frequently across national borders. As computer companies became more international 69

during the 1980s, there was a growing awareness that a universal, international standard was
necessary.

 Anthony McEnery and Zhonghua Xiao, “Chapter 4 Character Encoding in Corpus Construction.” 3-4.63

 Ibid; Ken Whistler, interview with author, January 29, 2020.64

 Anthony McEnery and Zhonghua Xiao, “Chapter 4 Character Encoding in Corpus Construction.” 4.65

 Ibid.66

 Ken Whistler, interview.67

 Anthony McEnery and Zhonghua Xiao, “Chapter 4 Character Encoding in Corpus Construction.” 9.68

 Joseph D. Becker, “Multilingual Word Processing.”69

30

With these needs in mind, at least three efforts were underway to develop a multilingual text
standard by the late 1980s. The first was an effort by ISO to unify all existing standards and hold
space for the rest of the world’s scripts that had yet to be encoded. Following this aim, a working
group was developing a 32-bit standard entitled ISO 10646. 32 bits meant that 232, or nearly 70

4.3 billion, pieces of data could be stored int he standard, meaning that ISO 10646 would have
enough codepoints for nearly 4.3 billion letters.

Another competing standard was the TRON standard, which was being developed out of the
University of Tokyo beginning in 1984. TRON used switch codes like those introduced by ISO
2022, but switched between several 16-bit ‘planes,’ so that it too could encode billions of
letters. 71

The TRON standard's distinguishing features were its attention to East Asian scripts. The East
Asian ideographs used for Chinese, Japanese, Korean, (”CJK“), Taiwanese, and sometimes
Vietnamese, were far more numerous than the number of letters needed for the Latin alphabet.
These scripts shared a common heritage and had some semantics in common, but each language
had evolved different glyphs for the same semantics. For example, though CJK each had an
ideograph for “return," the word was represented in the following five ways across Traditional
Chinese, Simplified Chinese, Vietnamese, and Japanese.

Figure 10. CJK Glyph Variants

In the TRON encoding system, each glyph was allocated its own codepoint. As a result, the
project would require 200,000 codepoints for East Asian scripts alone. Though it kept the 72

processing difficulties of switch codes and required more computer memory to store the large
encoding, TRON did honor the nuances of the CJK scripts by encoding all glyphs.

 Searle, “Brief History of Character Codes in North America, Europe, and East Asia.”70

 Ibid.71

 Ibid.72

31

In contrast to these initiatives, Unicode was designed to be an optimally-sized encoding system of
16-bits. This length was determined to be still-manageable for contemporary computers, yet 73

large enough to fit all major scripts, pursuant to a few notes.

The biggest challenge would be fitting in 200,000 CJK glyphs. A single 16-bit table would permit
65,536 rows of data, not nearly enough for even the East Asian scripts. But the early designers of
the Unicode Standard, Joe Becker, Lee Collins, and Mark Davis, recognized the common
semantics of the CJK ideographs and determined to unify them as a single set of codepoints. This
effort, termed “Han unification”, would reduce the 200,000 codepoints in TRON to
approximately 20,000 points instead. This would still leave about 45,000 spaces available for the
encoding of other scripts. 74

The decision around Han unification led to Unicode’s core design principle, of encoding only
“characters not glyphs.” The term “character” was invented by Unicode, and was rather
tautologically defined. In an early scoping document, Becker posed, was 16-bits enough to fit the
world’s characters? Answering his own question, he wrote,

Since the definition of a “character” is itself part of the design of a text encoding scheme, the
question is meaningless unless it is restated as: is it possible to engineer a reasonable
definition of ‘character’ such that all the world’s scripts contain fewer than 65,536 of
them? 75

The answer was yes, pursuant to the principle of encoding only semantically distinguishable
letters. It meant that for the example above, Unicode would only encode the concept of “return”
as one number, or “codepoint,” instead of allocating five codepoints for the five different glyphs
shown above.

“Han unification” was easier said than done. There was no existing documentation of what the
common set of characters was between the CJK scripts. A multinational committee would need
to be formed to determine the set of characters for unification. This meant determining 76

whether two glyphs that looked different from one another were only graphical variants, or were
representing the same underlying semantic value. If the difference was only graphical, then the
responsibility of distinguishing and displaying the correct glyph fell to the font layer.

But the “character not glyphs” policy was not consistently applied within Unicode. To save space
with the 16-bit standard, the founders of Unicode decreed that letters would also occasionally be

 Becker, Joseph D., “Unicode 88,” August 29, 1988, https://unicode.org/history/unicode88.pdf, 4.73

 “Unicode 88,” 3.74

 “Unicode 88,” 4-5.75

 See Shouhui Zhao, “Flows of Technology: Mandarin in Cyberspace, “ in Globalization of Language and Culture in Asia: The Impact of 76

Globalization Processes on Language, ed. Viniti Vaish (A&C Black, 2010) and Jing Tsu, Kingdom of Characters: The Language
Revolution That Made China Modern (Riverhead Books, 2022).

32

https://unicode.org/history/unicode88.pdf

defined by combinations of codepoints. The canonical example was overhead accents on Latin 77

vowels. Since the circumflex could appear on multiple vowels, Unicode’s design principles
decreed that the accented vowels be produced using a vowel+accent sequence like the example
below. This move of ‘composition’ was another space-saving policy, though it added one more
(small) processing step for computers to handle.

Figure 11. Codepoint Sequence Example

This policy was muddied, in turn, by yet another design principle – that of ensuring “round-trip,
backwards compatibility’ with major existing standards (other than in the case of CJK scripts). 78

This meant that existing encoding schemes would be included wholesale in the first version of
Unicode, as a way of achieving greater completeness and adoption. This led to the 7-bit ASCII
standard, then most widely implemented in software, being included exactly as is into the
Unicode Standard as the virtually identical first 128 codepoints. It also led to the inclusion of
several European standards, which had accented vowels such as ô ,î ,ê ,â, and û encoded directly
in their national standards.

As a result, the Unicode Standard had several redundant encodings included, in contradiction to
its other principles. Because of the topography of the computing industry – with the most mature
markets being located in Europe and East Asia – most of the redundant, convenient (or
unsequenced) encodings belonged to the Latin-lettered European scripts. This scheme would be 79

disparaged later by non-Latin users. When it came to East Asian scripts, Unicode reduced and
flattened; when it came to circumflexed Latin letters, redundancies were readily accommodated.

But these inconsistencies could not later be overturned because of a final core design principle,
the stability policy. This held that once an encoding, or even a character name, was officially 80

included in the Standard, it would be forever honored. This was a way to promise stability to
Unicode adopters and help maintain the integrity of downstream software.

Unicode’s launch was received with critiques of “cultural imperialism” by some, primarily
because of the affiliations of those steering the project. Unicode had been the brainchild of 81

former Xerox and Apple employees who had been working on encoding schemes for their
respective companies. ISO 10646, the unwieldy 32-bit standard, was overseen by an

’ The Unicode Standard, version 1.0, 10.77

 The Unicode Standard, version 1.0, 3.78

 The Unicode Standard, version 1.0, 19.79

 The Unicode Standard, version 2.0.80

 Searle, “Brief History of Character Codes in North America, Europe, and East Asia.”81

33

international treaty organization with country delegates voting on its development. In contrast,
the Unicode Consortium was designed to be a non-profit organization with tiers of paid
membership. Members could pay a fee of $10,000 USD to become a voting member. The
initiative quickly attracted the membership of the largest software companies, most of which
were based in the United States. To many observers, it appeared as if a cartel of American
companies was unilaterally steering the direction of Internet communication. As Dongoh Park 82

has written, the Unicode Standard was seen as an unwelcome sign of globalization against the
backdrop of nationalism and indigenous computing in South Korea. Others felt its ultimate 83

success was not owed to any technical superiority in its design, but rather the market power of
its overseers. Still others worried that the decisions over encoding would have practical impacts 84

on the language itself, likening the technical decisions to orthographic reform. 85

This was a key point that Unicode designers would reiterate to their users and detractors in
coming years: the Standard was as technical blueprint for computers, not meant to be a faithful
representation of a human-meaningful language. Even though a human might recognize î as a
single letter, a computer could still reasonably store and process it as “i” + “^”. This was the
foundational principle of Unicode being a “logical encoding,” as opposed to a graphical one. Its
aims were only to enable reliable communication and computing.

The Indic Case

Not much has been written about the case of Indic digitization, but its handling by Unicode is
illustrative of Unicode’s design and limits.

Many major scripts were not encoded in Unicode until version 3, released in 1999. This was due
to a lack of existing encodings to incorporate, or complexities in the script requiring more time
and resources to properly digitize. Indic scripts, however, were included in version 1 of 86

Unicode, grandfathered in through a modification of the Indian government’s ISCII standard.
ISCII was an interesting multi-script scheme that aimed to encode nine of India’s officially
recognized in parallel form. It was conceptualized by researchers at IIT Kanpur, who had noticed
commonalities in the phonetics and ordering of all the scripts that descended from the ancient
Brahmi script. The researchers decided to develop an encoding and keyboarding scheme that 87

would lay out analogous letters of these Brahmi-based scripts alongside each other.

 Searle, “Brief History of Character Codes in North America, Europe, and East Asia.”82

 Dongoh Park, “The Korean Character Code: A National Controversy, 1987–1995,” IEEE Annals of the History of Computing 38, no. 2 83

(2016): 40–53, https://doi.org/10.1353/ahc.2016.0021.

 Nicholas A. John, “The Construction of the Multilingual Internet: Unicode, Hebrew, and Globalization,” Journal of Computer-84

Mediated Communication 18, no. 3 (April 1, 2013): 321–38, https://doi.org/10.1111/jcc4.12015.

 D.K. Jordan, “Languages Left behind: Keeping Taiwanese off the World Wide Web,” Language Problems & Language Planning 26, no. 85

2 (August 1, 2002): 111–27, https://doi.org/10.1075/lplp.26.2.02jor.

 Whistler, interview.86

 R. Mahesh K. Sinha, “A Journey from Indian Scripts Processing to Indian Language Processing,” IEEE Annals of the History of 87

Computing 31, no. 1 (January 2009): 8–31, https://doi.org/10.1109/MAHC.2009.1.

34

https://doi.org/10.1075/lplp.26.2.02jor
https://doi.org/10.1353/ahc.2016.0021
https://doi.org/10.1109/MAHC.2009.1
https://doi.org/10.1111/jcc4.12015

Each script would have its own encoding — akin to other ‘switch code’ schemes — but the
envisioned advantage of laying out letters in the same order was that one could move between
the scripts relatively easily, swapping out a keyboard cover for Devanagari with one for Bangla,
and having the letter ‘ka’ from both scripts be in the same place. Multilingual text processing, 88

which depending on the sorting order of the letters, might also become more easy to do.
Functions like adding 3 to ‘ka’ to get ‘ga’ (akin to adding 3 to ‘a’ to get ‘d’) could be done with
similar algorithms across the scripts.

While a clever linguistic analysis, ISCII had been perceived in India largely as an abstract
experiment with limited practical value. Due to the idiosyncrasies between scripts that had
evolved over many centuries, there were enough differences between them that translation
between them was severely impaired. Furthermore, ISCII was controversial for seeming to
privilege Devanagari, the script used to write the majority-language Hindi. Devanagari was
placed in the first column of the encoding, against which all other scripts were made to
correspond. As a result, many of the idiosyncrasies of the other scripts were left out of early
versions of the ISCII standard.

Regardless, by 1988, ISCII had captured the attention of government officials in these
Department of Electronics and was adopted by the Department of Official Language in the
Ministry of Home Affairs. 89

When Unicode was being prepared in the following years, ISCII came to be included merely
“because it existed.” It made sense to pick it up — the “Government of India made it, were 90

promulgating it, trying to implement it.” Since Unicode had a different aim of assigning unique 91

codepoints to letters, it separated out the columns in ISCII and assigned each new codepoints. In
accordance with the desire for backwards compatibility, only a trivial formula was needed to
translate between the Unicode Standard and a machine that was already programmed with
ISCII.

ISCII’s design had accorded with the logical encoding philosophy that Unicode had sought to
follow at the outset. In both Unicode and IIT Kanpur’s estimation, for complex scripts such as
these, computing was best served by storing only the semantics in the backend, and letting
glyphs be handled on the surface level by other display technologies.

 “Development of ISCII and INSCRIPT Keyboarding - Dr. R. M. K. Sinha,” accessed June 29, 2022, https://sites.google.com/site/88

profrmksinha/research-projects/development-of-iscii-and-inscript-keyboarding.

 “IS 13194 (1991): Indian Script Code for Information Interchange - ISCII,” iv. https://law.resource.org/pub/in/bis/S04/89

is.13194.1991.pdf

 Ken Whistler, interview with author, April 23, 2020.90

 Ibid.91

35

https://sites.google.com/site/profrmksinha/research-projects/development-of-iscii-and-inscript-keyboarding
https://sites.google.com/site/profrmksinha/research-projects/development-of-iscii-and-inscript-keyboarding

Figure 12. Alignment of Indic Scripts in ISCII (Bureau of Indian Standards, 1991)

36

Displaying Indic Scripts

The ISCII/Unicode encoding scheme was elegant in theory. In practice, however, rendering a
ligature — a single glyph representing one or more characters — proved quite troublesome.
There were two major sets of challenges with respect to displaying glyphs.

One issue had to do with the ordering of glyphs. Indic scripts were what linguists called an
abugida writing system. This meant that consonants were the primary building block of the
alphabet, and that they had a default vowel sound associated with them, called an “inherent
vowel.” In Bangla, the inherent vowel was [ô], transliterated as ‘a.’ So the ক consonant did not
represent the sound ‘k’, but rather ‘ka.’

Consonants could be modified to remove the vowel sound, using a silencer called a “virama”
(Devanagari) or “halant/hasanta” (Bangla). The virama would appear under the letter (e.g. ক্ =
‘k’). The inherent vowel could also be adjusted to carry a different vowel sound. These “vowel
modifiers” could appear on any side of a consonant. In some cases, a single vowel modifier could
have two glyphs that appear on either side of the consonant (e.g. #কা). Vowels could also appear
in an “independent” form, usually at the beginning of a word.

Figure 13. Vowel Modifiers On Ka (Bhargav Chowdhury - Creative Commons)

In ISCII, and thereby in Unicode, vowel modifiers, full vowels, and consonant full-forms were all
independently encoded. The matter of re-ordering and re-positioning was relegated to higher-
level software, however. Most keyboards were programmed to require the ‘base consonant’ to be
inputted first, followed by the vowel modifier. Rendering software was responsible for finding the
information about where the glyph should be displayed (placing a vowel modifier before or after,
or sometimes below, the base consonant), and doing that reordering as a secondary process. In 92

this way, Unicode’s handling of Indic scripts defined a major expectation of anticipated digital
type software.

There was a second more complicated expectation for rendering software with respect to
consonant combinations, called “conjuncts.” In all Indic scripts, consonants could not only
combine with vowels, but also with other consonants, as many as three forming a single
conjunct. As conjuncts were perceived by Unicode to be variations in presentation, rather than
semantically different from their constitutive parts, displaying the right conjunct glyph was also
relegated to rendering software.

 The Unicode Standard, version 1.0, 13.92

37

Figure 14. “Text Rendering Process” The Unicode Standard V.1

Deciding which conjunct glyph to display was not straightforward, however. Consonants could
combine in a variety of ways. They could appear as a brand new ligature. There might be more
than one form of the conjunct, with usage depending on the preferences of the user community.
In some cases, the convention may be for the consonants to not combine at all, and instead
appear side by side with a virama underneath. Though the below examples are semantically
identical, their visual representation was anything but.

Figure 15. Examples of Ta+Ta+Akar in Ligated, Non-Ligated, and Galant-Forms (Unicode PRI-30)

38

How could the rendering software know which option to use in a given case? To help in this,
Unicode encoded a handful of “non-printed characters,” or “control characters.” The Standard
already had a virama/halant encoded from ISCII, which by default would trigger the halant-form
of the conjunct from the font. If non-ligation was explicitly desired, then a “zero width
nonjoiner”, or “zwnj” could be used to display case A above. Another control character, called a
“zero width joiner” or “zwj” could follow a consonant to explicitly trigger its joining form.

If that scheme felt difficult to follow, your opinion would put you in the majority. In practice,
ligating practices would be where Unicode would falter most for Indic scripts. The number of
potential options for glyphs were so varied that control characters began needing to be combined
in three or four codepoint sequences to cover them all. Furthermore, the logic for when to
display which glyph varied across the Indic scripts, meaning the perceived simplicity and benefits
of a common modeling system for all of the scripts quickly disappeared. What was initially
perceived to be a straightforward, Devanagari-based system would receive crack after crack as
the specific needs of other script communities came to light. And most importantly, the job of
processing and displaying the right glyphs for Indic scripts was assigned in 1991 to a yet-to-be
developed type software. Until its invention and widespread implementation, Unicode could not
be used out of the box for any Indic script.

The OpenType Format

I move on now to a standard that became equally important as Unicode for Indic scripts: the
OpenType font format. The OpenType Format (OTF) was a font format defined by Microsoft in
1997, but in partnership with major software design firm, Adobe. Though Microsoft receives
most of the popular acknowledgement for OTF, the format built directly on Apple’s font
technology, the TrueType format (TTF), released in 1991. But in terms of global impact, OTF 93

became far more significant for its wide reach and attractiveness to type designers.

The 1990s saw the development of several font formats that could support Indic scripts. Their
development was the result of several intertwining trends, which I handle in turn in the
following sections: advances in typesetting, typography becoming a computerized activity, and
again, the desire for global expansion by technology companies.

Within type and design histories, where OTF has received the most attention, OTF is widely
hailed for ending the “font wars” of the late 1980s and 1990s and for making advanced
typography possible — subscripts, superscripts, ligatures, and custom design choices. But its 94

critical importance in the story of multilingual computing has rarely been acknowledged in the
extant literature. Here, I present this untold history and use it to connect the histories of
typography with that of computing and communications.

 An iteration on TTF, called TrueType GX, was actually the first to support the Unicode Standard and fill in some of the gaps for 93

making complex scripts work.

 Robin Kinross, “The Digital Wave,” Eye Magazine, 1992, https://www.eyemagazine.com/feature/article/the-digital-wave.94

39

https://www.eyemagazine.com/feature/article/the-digital-wave

A Brief History of Typography

Though Johannes Gutenberg often gets the credit for popularizing movable type, the basic
technology had existed since its invention in 11th century China. Gutenberg’s main innovation 95

was in developing “adjustable molds” — a method of printing faster and more cheaply. This was
the driving concern of typography in the centuries that followed — minimizing costs for mass
production. To the extent that the technology allowed, typographers also sought to maximize 96

legibility and convey the spirit of the text in the typeface design. 97

These goals followed typography into the 20th century, when several developments helped
transform the craft — evolving type from hot-metal to cold, and from analog to digital. The first
major step in this direction was the development of phototypesetting, where instead of metal
typefaces being forged and inked, text was produced by exposing light through cut patterns of
letters onto chemically-treated paper.

Though phototypesetting removed some of the physicality of typesetting, the format was still
considered “analog.” Type became “digital” with the invention of the Digiset machine in 1966, 98

in which light was made to shine through grids of tiny points that represented the shape of a
letter. As type historian Robert Kinross has written, “digital typesetting means that letters exist
only where they can be generated by the rectilinear sweeps of a beam, either on or off.” Indeed 99

the Digiset machine came with a terminal where the tiny points defining a letter, the “bits,” could
be edited and “saved” as data to be reused or transferred to another machine (via, for example, a
floppy disk, which was invented in 1965.) This process improved efficiency and permitted
customization; the patterning structure came to be known as the ‘bitmap format’ and the
punched points would slowly transition to computer pixels. 100

After this first example of digital typesetting, many others began working on making type
mathematical and machine-readable. One problem with the bitmap format invented for the
Digiset machine was that it was often discontinuous across font sizes. The bit patterns needed to
be thoughtfully recomposed as the font became bigger or smaller, especially when trying to mind
features like serif strokes or flourishes that were harder to define at smaller scales that had fewer
bits available. What was needed were “scalable fonts” or what is often called “vector fonts.” 101

Vector fonts came to be defined by mathematical formulae that combined straight and curved

 Robin Dodd, From Gutenberg to OpenType: An Illustrated History of Type from the Earliest Letterforms to the Latest Digital Fonts, 95

Illustrated edition (Vancouver: Hartley and Marks Publishers, 2006).

 Dodd 2006. 96

 Ibid.97

 Ibid.98

 Kinross, “The digital wave.”99

 “Early Technologies of Digital Type,” accessed June 29, 2022, http://www.designhistory.org/Digital_Revolution_pages/100

EarlyDigType.html.

 Ibid; Greg Hitchcock, interview with author, March 2, 2022.101

40

http://www.designhistory.org/Digital_Revolution_pages/EarlyDigType.html
http://www.designhistory.org/Digital_Revolution_pages/EarlyDigType.html

lines to produce glyphs. These too were introduced by Dr. Rudolph Hell in 1974, the inventor of
the Digiset machine. Computer companies like Microsoft and Apple would later compete 102

against each other on the size of their library of vector fonts.

Figure 16. Original Mac Bitmap Fonts (David Remahl - Creative Commons)

These technological developments mostly affected high-volume typesetting, for clients such as
newspapers. There were also several developments in “personal typesetting” that would set the
path for personal desktop publishing in 1980s (which in turn would converge with the Unicode
Standard in the 1990s). Typewriters became more customizable and supportive of advanced
typography.

First was IBM’s Selectric typewriter in 1961, which had golfball-shaped character molds that
allowed faster, jam-free typing. The modular, switchable “font balls” could also be changed to 103

bold or italic type, or even to certain non-Latin symbols from Greek or Cyrillic.

 “Early Technologies of Digital Type.”102

 Dodd, 2006.103

41

Figure 17. IBM Selectric “Symbol 10” Font

“Word processing” was also popularized as a concept, also by IBM through its release of the MT/
ST typewriter, which had magnetic type to store text in memory. A typist could now select text, 104

copy-paste, backspace and rewrite. These developments are important to understand because
they lay out how previously distinct activities were slowly converging in the late 20th century —
as character codes can be seen as representing a convergence in computing and communications,
digital fonts can be seen as convergence between computing and typography.

Digital Type on Personal Computers

The 1970s brought about the personal computer revolution. Early screens had low resolutions —
these force the creation of jagged bitmap fonts in emerald green (a result of the constraints of
the cathode ray tubes powering the screens). Though there was text on computers, typography 105

remained a largely separate industry from computing. Text on computers was mostly in Latin
script, except for a handful of experiments with Japanese computerized word processing in the
late 1970s. Complex scripts were not initially supported by the 1970s personal computer 106

revolution; they were still either typewritten in local language typewriters, or typeset for mass
production on dedicated hot metal or photocomposition machines.

This state of affairs would change drastically with the release of a suite of technologies in 1984
and 1985. The following history is well known to the type design community. First was the Apple
Macintosh computer, released in 1984 and the first personal computer to have a graphical user

 Brian Kunde, “A Brief History of Word Processing (Through 1986),” accessed June 29, 2022, https://web.stanford.edu/~bkunde/104

fb-press/articles/wdprhist.html

 Dodd 2006.105

 K. Mori and T. Kawada, “From Kana to Kanji: Word Processing in Japan,” IEEE Spectrum 27, no. 8 (August 1990): 46–48, https://106

doi.org/10.1109/6.58434.

42

https://doi.org/10.1109/6.58434
https://doi.org/10.1109/6.58434

interface. Apple was positioning itself to be the premier tool for design. It did so by designing 107

the Macintosh to be compatible with two other technologies: a ‘page description language’ called
PostScript and a page design application called PageMaker, released by the Aldus Corporation. 108

PostScript was the invention of a newly established design firm, Adobe. Adobe was an outgrowth
of the work done by former Xerox PARC employees on computerized word-processing and
printers. PostScript provided the necessary instructions to computers to display on-screen fonts,
and a set of instructions to output devices like printer to transfer them to a physical page.
Together with Aldus’ design software for Macs, and Apple’s PostScript-compatible laser printer,
the Laser Writer, it suddenly became possible for an individual to become a publisher. These
technologies would constitute what we now refer to as Desktop Publishing (DTP). The design
industry was agog. 109

There were reasons to seek an improvement upon photocomposition. The holes on paper left
edges soft where one might want them crisp; in contrast, the new DTP tools could support more
beautiful and controlled typeface design. Major type foundries such as Linotype began 110

producing PostScript fonts, including for their non-Latin libraries, as early as 1987. 111

Part of Adobe’s deal for PostScript fonts, however, was that designers had to license proprietary
production tools from Adobe at steep costs. Despite the cost, a major appeal of Adobe’s 112

software was their font technology. Adobe had developed two categories of PostScript-compatible
fonts: Type 1 and Type 3. Type 1 quickly supported both bitmap and vector fonts, and introduced
the notion of “hinting.” Hints were where designers could specify exactly how the design should
be scaled at different sizes and resolutions to maintain the integrity of the typeface features. This
was especially important at small scales where bitmaps or poorly-defined vectors would lose
stroke lines or serifs. Type 1 fonts were proprietary, whereas Type 3 were an open format and
used bitmaps instead of vectors with hinting.

The high cost and evident superiority of Adobe’s font technology led competitors like Windows
— still using choppy and memory-heavy bitmaps — to explore options of its own to keep up. 113

To the surprise of the competing and design industries, Windows ended up partnering with Apple
to develop its own format in 1989, called TrueType (which would officially be released two years
later). Apple had found Adobe’s licensing fees too high, on the order of the profit gained from
selling the LaserWriter, and so was seeking an alternative. TrueType would be designed by Apple
and licensed to Microsoft for free to ensure the format’s wide adoption. This event — the

 Phil Baines, “A Cast of Thousands,” Eye Magazine, 2002, https://www.eyemagazine.com/feature/article/a-cast-of-thousands.107

 Ibid.108

 Ibid.109

 “Early Technologies of Digital Type.”110

 Riccardo Olocco, “Linotype Bengali and the Digital Bengali Typefaces,” MA thesis, University of Reading, 2014.111

 Hitchcock, interview.112

 Ibid.113

43

announcement of the partnership between the two computer companies — would launch the
“font wars.” 114

Digital Typography going Global

The font wars are folklore in the contemporary typography industry and are typically told as
follows: Adobe sought to compete with the upcoming TrueType release by opening up their font
formats and lowering the prices of their software. Apple and Microsoft nonetheless released their
own technology, TrueType, in 1991 and released fonts for it on their operating systems. Microsoft
split from Apple due to new, high licensing fees, leading the two companies to pursue separate
ventures in 1992. Apple released the next version of TrueType, called TrueType GX, in 1994;
Adobe released another format called Multiple Masters in 1992; and Microsoft released their
own called TrueType Open. 115

For users and designers, this stage of the competition was not ideal. Font formats were not
compatible with one another, either needing to be hacked into operating systems, or making it
simply impossible to share documents between devices. We should note here that in the
background, several important technological milestones had taken place. The World Wide Web
had been invented in 1991, giving a new platform and use-case for personal publishing. The
steady opening of the internet to commercial service providers was taking it from an academic
research network to a network for the masses. There were two implications of these trends for
fonts: screen display was becoming more important than printed display, and interoperability, the
ability to share content reliably across computer networks, was all the more important.

In 1997, the font wars were unexpectedly resolved, through the announcement of a partnership
between Adobe and Microsoft on a new multi-platform format, OpenType. OpenType fonts would
be usable on both Mac and Windows operating systems and would support both PostScript and
TrueType font formats. They would also be Unicode-compliant. OpenType fonts could now work
essentially anywhere and give designers a reliable format to design around. 116

In the story of multilingual computing, these developments raise two key questions: what led to
this truce, and how did the outcome result in support for multilingual type? The answers are, in
fact, intertwined. Here I begin presenting the story of OpenType that has not been chronicled
within the typography industry.

As noted in the previous section, Unicode was in development between 1988, through the launch
in 1991. In the final years before the launch, the initiative had drawn in both Microsoft and
Apple employees. As talk simultaneously grew of developing a new font format, it was clear to

 Ibid.114

 Kinross, “The digital wave.”115

 PeterCon, “OpenType Overview - Typography,” accessed June 29, 2022, https://docs.microsoft.com/en-us/typography/opentype/; 116

Hitchcock, interview.

44

https://docs.microsoft.com/en-us/typography/opentype/

both companies that the format would need to support Unicode. Though the initial release of 117

TrueType did not yet support Unicode, it laid the groundwork for future formats to do so.

TrueType font files were structured to contain several data tables, each specifying different glyph
parameters: widths, outline data, instructions for printers, and other such “metrics.” Amongst
these was the character map (“CMAP”) which defined the relationship between characters and
glyphs. Though Apple chose not to use Unicode mapping for the CMAP at this time, the structure
was amenable to supporting it down the line. 118

In the next version, Apple added an additional table to TrueType called the “MORPH” table. The
MORPH table could essentially keep track of the characters and swap out glyphs as needed
depending on the context, just as Unicode’s logical encoding system required the font layer to
do. To understand how this worked, here is an example from Arabic. In Arabic, glyphs would 119

vary for letters depending on where in the word the letter appeared — at the start, in the middle,
or at the end. Apple’s MORPH table would contain this information about the initial, medial, and
ending graphical forms of a character and would work with backend software to display the
correct glyph on a text editor. This format, TrueType GX, was then the first to make it technically
possible to display complex digital text. However, TrueType GX is largely forgotten to history 120

as it gained limited adoption, not having the support of neither Microsoft nor Adobe.

Figure 18. Arabic Forms for the Letter “Mim” (the SVG Effect - Creative Commons)

Microsoft, now on its own, iterated on TrueType to create TrueType Open. Instead of a MORPH
table, its approach was to add ‘positioning’ and ‘substitution’ tables (“GPOS” and “GSUB”), which
would provide information on how glyphs should be rearranged. Microsoft used this format to

 Hitchcock, interview.117

 Ibid; Lee Collins, interview with author, March 22, 2022.118

 Ibid.119

 Apple employee, interview; Lee Collins, interview; Greg Hitchcock, interview.120

45

release the Arabic version of Windows in 1995. Seeing this, the Indian government released a 121

paper soon after recommending its usage for Indic scripts. 122

Despite the positive reception, TrueType Open was also short-lived. Industry pressure and the
competition of the font wars led Adobe to seek a meeting with Microsoft in 1996. Adobe’s 123

PostScript fonts did not have Unicode support, and though they printed with greater clarity than
TrueType-based formats, screens were becoming the important medium for display because of
the growth of the internet and the Web. TrueType had a sophisticated programming language
built into the font, which was passed down to TrueType Open, and so it could readily produce
high definition vector fonts for the screen, which Adobe wanted. For Microsoft, partnering with
Adobe offered an opportunity to end the font wars — to finalize an interoperable font format
and gain access, at the same time, to Adobe products as part of the deal. And so, this meeting 124

resulted in the announcement of the OpenType format only a year after the release of TrueType
Open.

For Adobe, OpenType allowed many of the customizations they wanted to make advanced
typography possible — subscripts and superscripts, ligatures. These features were previously
relegated to “expert sets,” font files that had to be purchased separately with the necessary
glyphs. This aspect of OpenType, “advanced Latin typography” is often hailed by typographers 125

as its defining feature. But it was these same customization abilities that can be used to support
multilingual communication — GPOS data could help position a Latin subscript but also a
Devanagari nukta. The turn of the millennium would bring about the search for the next 126

billion users, and Microsoft now had the tools to reach out to them.

Figure 19. Subscript and Nukta

 Hitchcock, interview; Paul Nelson, interview with author, March 24, 2022.121

 Shrinath Shanbhag, interview with author, March 28, 2022; S. P. Mudur et al., “An Architecture for the Shaping of Indic Texts,” 122

Computers & Graphics 23, no. 1 (February 1, 1999): 7–24, https://doi.org/10.1016/S0097-8493(98)00113-7.

 Hitchcock, interview.123

 Ibid; PeterCon, “OpenType Overview - Typography.”124

 Hitchcock, interview.125

 Constable, interview. Amelie Bonet, interview with author, July 21, 2021.126

46

https://doi.org/10.1016/S0097-8493(98)00113-7

Rendering support

There was one final piece was necessary to make Unicode and OpenType workable; this was the
“rendering engine.” Because the Unicode Standard only provided codepoints and the OpenType
format only provided tables of glyph data, another layer of software was required to assemble
these pieces and tell a software application what to show. This task was performed by the
rendering engine, also known as a “shaping engine.”

A user would type letters on a keyboard that had keys mapped to Unicode code sequences. The
rendering engine would then take the codepoints and find the relevant glyphs with the
instructions on how to display them in the OpenType font file. The engine would then implement
the necessary positioning and substitutions (following the GPOS and GSUB tables) and spit out
the correct text in the application (e.g. a word processor, email client, or web browser). 127

The engine was not only responsible for selecting the right glyphs and positions, but also for
determining “fallbacks” — which glyph to show if the preferred one did not exist in the font.
Especially for Indic scripts where many possible character combinations existed, a font designer
would rarely draw all 300+ possibilities. If no ligature is available, for example, then the engine
might search instead for the non-ligated form to show, instead of displaying a blank or square
where the glyph was meant to go.

Finally, the rendering engine was also responsible for text-editing functions, such as determining
“caret placement,” or how the on-screen cursor travels across letters; in what order glyphs were
backspaced and selected; and where to insert line breaks within words. These functions 128

depended on how the rendering engine defined “clusters” - roughly approximated to letters in
alphabetic writing systems and syllables in alpha-syllabic/abugida writing systems. Cluster
boundaries were also important for advanced natural language processing, such as text search
and sorting. 129

Rendering engines, at least for OpenType fonts, were thus required to be fairly complicated and
comprehensive pieces of software with embedded knowledge of the encoding system, the font
file, and the structure of the language itself. In Apple’s font technology, much of the language-
specific rendering information was programmed into the font itself, as in the MORPH table,
rather than left to the engine. This had certain advantages — namely, fewer points of failure as
various technologies attempted to coordinate together. But that same concentration, rather than
distribution, of responsibilities meant that the font designer needed to acquire supplemental

 Each application would also need to be configured to work with the rendering engine. This configuration was called “layout 127

support.”

 For scripts where spaces between words may not be standard.128

 F. Avery Bishop, David C. Brown, David M. Meltzer, “Supporting Multilanguage Text Layout and Complex Scripts with Windows 129

NT 5.0,” Microsoft Systems Journal, November 1999. https://web.archive.org/web/19990828165906/http://www.microsoft.com/
MSJ/1198/MULTILANG/multilangtop.htm

47

linguistic and engineering knowledge, beyond only design, to prepare Apple fonts. Apple’s 130

decision to build smart fonts meant it could therefore maintain a relatively simpler engine, which
it called Core Text.

For Indic script users, OpenType’s design was more relevant than TrueType’s, as Windows had a
deeper global market penetration than Apple. When OpenType was first being developed,
Microsoft began by hardcoding the rendering logic for Arabic straight into the operating
system. This was their first experience of working with a complex script, in 1995. “Hard-131

coding” meant the code in the operating system was very Arabic-specific — how to parse the
OpenType font tables, how cluster logic worked. By the release of Windows 2000, however,
Microsoft had opted for a different approach of developing separate engines for “script families”
that were perceived to have similar logic. These script specific engines, e.g. “Arabic” or “Indic,”
would plug into a more general text renderer called Uniscribe. 132

Uniscribe support for Indic expanded rapidly. The Devanagari script was included in Windows
2000, followed by Gujarati, Gurmukhi, Kannada, Telugu, and Thaana in Windows XP, released
the following year. Windows XP SP2, also released in 2001, nominally included support for
Bangla and Malayalam, covering the majority of South Asia’s language communities. It 133

appeared as though, by 2001, all of the pieces needed to create, send, and display Indic scripts
between computers was in place.

However, as a study by Lancaster University reported in 2007, Unicode use in South Asian
documents was extremely limited. Using data the researchers had scraped from the web between
2000 and 2003, they found that though there was a great deal of text in Indic scripts being
produced online, they were in “a bewildering variety of fonts and formats.” Other essays in the 134

early 2000s pointed to the same problem: Indic pages were not showing up on Google as the
underlying encodings of Indic webpages were not in Unicode, which was what the Google engine
utilized. The search engine couldn’t therefore match strings. 135

Why was this the case? To start, Unicode adoption took several years, filtering through operating
systems, applications, and the Web. Unicode veterans tended to mark version 3, released in

 Hitchcock, interview; Apple employee, interview.130

 Hitchcock, interview; Nelson, interview; Andrew Glass, interview with author, October 29, 2021.131

 Ibid. John Hudson, “Making Fonts for the Universal Shaping Engine,” http://tiro.com/John/132

Universal_Shaping_Engine_TYPOLabs.pdf.

 Michael S. Kaplan, “Script and Font Support in Windows,” October 31, 2007, http://archives.miloush.net/michkap/archive/133

2007/10/31/5800258.html.

 Andrew Hardie, “From Legacy Encodings to Unicode: The Graphical and Logical Principles in the Scripts of South Asia,” Language 134

Resources and Evaluation 41, no. 1 (2007): 1–25.

 Mahesh, B. G. “From NRIs to Indians to Global Citizens: Evolution of the Indian Presence on the Internet” in NetCh@kra: 15 years 135

of Internet in India. 2011.

48

http://tiro.com/John/Universal_Shaping_Engine_TYPOLabs.pdf
http://tiro.com/John/Universal_Shaping_Engine_TYPOLabs.pdf
http://archives.miloush.net/michkap/archive/2007/10/31/5800258.html
http://archives.miloush.net/michkap/archive/2007/10/31/5800258.html

1999, as the milestone where the Standard had covered all national and “commercially viable”
scripts. Unicode was also incorporated in all Microsoft software at that point. 136 137

Another milestone was in 2007, when Google reported that Unicode encodings had finally
overtaken ASCII in use on webpages. Indeed, the oft-cited essay by Science and Technology 138

Studies scholars Pargman and Perle, “ASCII Imperialism,” was published as late as 2007 and
warned of the biases embedded in the American standard ASCII. Pargman and Perle pointed 139

towards Unicode as an improvement over ASCII, but were uncertain it would catch on.

But as the Lancaster study and Paolillo pointed out, the lackluster adoption of Unicode for Indic
scripts had more to do with the lack of rendering support for complex scripts rather than
Unicode’s generally slow adoption. Though Windows had begun officially supporting Bangla in 140

Windows XP SP2, it had yet to release a Bangla font and was still refining the rendering engine.

As previously discussed, the rendering engine was responsible for converting Unicode codepoints
(or sequences of codepoints) into the appropriate glyphs. For Indic scripts, this required
processing, but also defining various combinations of characters and control characters, using the
zwj, zwnj, and virama. In some cases, Unicode provided guidance in the Standard. It would also
put certain explanations on its online FAQ pages. But in the many edge cases that arose, the job
of defining a sequence to portray a certain glyph fell to the maintainers of the rendering engine.

Though Microsoft’s Indic rendering engine was released with many scripts by 2001, it would take
several years for all of the rendering logic to be worked through, at times requiring an upstream
decision by Unicode. It is in that period that the events of the rest of this dissertation take place.

In some ways, this outcome of slow Indic script support can be seen as the result of Unicode’s
early design decisions. By structuring the encoding layer as a set of puzzle pieces that other
technologies needed to assemble for Indic scripts, responsibility for proper display moved up the
technical stack. Gaps and bugs became more likely.

The Lancaster University study had noted that Indic font designers had taken an alternative path,
of building “graphical encodings” that merged the encoding layer and the font layer. These 141

had a unique codepoint was assigned to each possible grapheme of a script, much like the TRON

 Whistler, interview.136

 Ibid. Constable, interview.137

 “Moving to Unicode 5.1,” Official Google Blog (blog), accessed June 29, 2022, https://googleblog.blogspot.com/2008/05/moving-138

to-unicode-51.html.

 Pargman D, Palme J. "ASCII imperialism” in Standards and Their Stories  : How Quantifying, Classifying, and Formalizing Practices 139

Shape Everyday Life. Ithaca: Cornell University Press; 2009. p. 177–99.

 Hardie, 2007; John C. Paolillo, “Language, the Internet and Access: Do We Recognize All the Issues?,” 2010, http://www.efnil.org/140

documents/conference-publications/thessaloniki-2010/language-languages-and-new-technologies/08-John-C-Paolillo.pdf.

 Hardie, 2007.141

49

https://googleblog.blogspot.com/2008/05/moving-to-unicode-51.html
https://googleblog.blogspot.com/2008/05/moving-to-unicode-51.html
http://www.efnil.org/documents/conference-publications/thessaloniki-2010/language-languages-and-new-technologies/08-John-C-Paolillo.pdf
http://www.efnil.org/documents/conference-publications/thessaloniki-2010/language-languages-and-new-technologies/08-John-C-Paolillo.pdf

standard had started to do with East Asian scripts. But these graphical encodings for Indic scripts
were also unstandardized, meaning every font developer followed their own set of mappings,
reverting to a pre-Unicode era. As one designer said, this solved the “primary challenge of
getting text to look right on screen,” which Unicode had punted on. But because neither the 142

encoding nor the font were standardized, the typist data could not be transmitted or exchanged.
For this reason, these fonts were known as “vendor-specific fonts” or “proprietary fonts.” The
fonts would typically be bundled with a keyboard and word processing software and sold as a
full-suite of tools for Indic digital typesetting. They fulfilled the needs of typesetting, but 143

faltered when transferred to the Web. Only a user who also owned the same vendor-specific font
package could view the webpage accurately. While Latin scripts often had the same problem of a
font not displaying if not installed on one’s own computer, in the complex script case, the text
would appear completely broken, even with the same underlying encoding standard was used.

Figure 20. Example of Broken Bangla Font

(from https://github.com/dompdf/dompdf/issues/2627)

This was the true cost of Unicode’s design. Its orientation around Latin and East Asian scripts —
the most important and established markets at the time of Unicode’s founding — led to policies
such as “Characters not Glyphs.” As a result, downstream tools such as clever font formats and
complex rendering engines needed to be developed and refined to ultimately support Indic
scripts. When those tools were inadequate or slow to arrive, swaths of Indic script internet users
would adopt alternate schemes — schemes that displayed text correctly, but which hindered their
ability to participate in the global internet. Proprietary fonts could not be easily transmitted
across wires or indexed in search engines.

For some, the lack of interconnection was acceptable. But as the next chapter shows, a vanguard
of South Asian internet users were longing for connection, and it would be these users that would
seek to mold text standards to their needs and fulfill the software gaps that were lacking.
Chapter 2 begins where this chapter leaves off, showing how independent Bangla software
hobbyists would grapple with the fragile multilingual computing stack that had been developed
in the West.

 Liang Hai, interview with author, December 9, 2020.142

 Hardie, 2007; Olocco, 2014. 143

50

https://github.com/dompdf/dompdf/issues/2627

51

Chapter 2: Building Bangla Software

On October 30, 2002, Sayamindu Dasgupta sent out the following email:

It said,
“This is probably the world’s first mail written in Bangla. Yes, maybe before there was some
Bangla in something someone posted on the mailing list, but this is probably the first that is
completely in Bangla. If we could write the email addresses in Bangla that would be better,
but probably no one has made Bangla domains. But, the biggest thing is that writing this
email did not take any Microsoft programs. We can hope that the world’s first Bangla
operating system will also be free software.” 144

Sayamindu was a seventeen year old high school student in Kolkata, India. In the past month, he
had designed a Bangla font, found a working keyboard, and figured out how to configure an
email client so it could send and receive Bangla messages. Now he was sending instructions to
others on how to do the same, and celebrating his set up by sending what he believed was the
first full email written in the Bangla script.

 Dasgupta, Sayamindu, “িচ' [“letter”]” Email, October 30, 2002. Translation by the author.144

52

Indeed it may have been. As we saw in the previous chapter, the tools that made a multilingual
internet possible were just beginning to be implemented. The Unicode Standard had been
released; the OpenType format was announced; rendering and layout software to interpret them
were beginning to come out. But major firms like Microsoft had not yet actually released Bangla
editions of their software. Though Hindi and Tamil Windows operating systems were available
starting in 2000, the Bangla version was set for 2003. In the meantime, however, there were
many keen internet users like Sayamindu who wanted to send messages in their scripts across
the internet. Though the pieces to make this possible were available, it took technical savvy to
assemble them correctly. It was hard to imagine a grandmother sitting at her computer and
knowing how to turn the gibberish she received in her email into beautiful Bangla text. There
was no out-of-the-box solution to local language computing yet.

This chapter tells the story of the independent hobbyists who began working on Bangla language
software when no one else would. Individuals like Sayamindu would use the Web to research the
latest standards and technologies that were emerging to support local language computing. They
were not only interested in tools that would help them write Bangla language documents on
their personal computers — the proprietary fonts mentioned at the end of Chapter 1 would allow
them to do so —rather, they were interested in building fonts and keyboards that prescribed to
new universal standards, ones they believed would be widely adopted and would allow them to
participate in the global discussions occurring on the Internet. These individuals would form
social groups — virtual communities — within which they would organize to build and advocate
for Unicode and OpenType-compliant technologies.

At the same time, these individuals would be working mostly with free and open source software
— software that was free to use, modify, and redistribute, and which found a natural ideological
opposition to major private technologies companies like Microsoft. As Sayamindu wrote at the
close of his email, a major aspect of his victory was not relying upon any Microsoft programs to
send the email in Bangla script. There was an innate tension in despising Microsoft while
promoting the font format it created, the only one that made it possible for Bangla script to be
transmitted across the internet to any machine and show up correctly on the receiving screen.

Open source hobbyists groups such as these existed were not confined to South Asia — there are
similar examples throughout Asia, Europe, Africa, and Latin America. This chapter highlights 145

their role in producing early versions of local language software, such as fonts, keyboards, and
localized interfaces. While open source enthusiasts are often positioned in opposition to
Microsoft, the case study in this dissertation eventually illustrates communication between the
two parties, particularly over open standards that affected both. The relations between open
source hobbyists and Microsoft however begin, in this chapter, from a place of suspicion and
begrudging reliance.

I proceed with a brief history of free and open source software (FOSS), then present a series of
case studies of three FOSS Bangla computing projects. I show how these hobbyists groups (Free
Bangla Fonts, Bengalinux, and Indic-computing) played an important role in building a

 Hossain, Anushah. “Regional Open Source Software Communities: The View from Dhaka, Bangladesh” June 2021.145

53

multilingual internet. They represented the vanguard in South Asian computing, recognizing the
importance of emerging text standards before their national governments and academic
institutions.

I then contextualize the activities and motivations of the members of these groups within the
recent histories of computing and internet policy in India and Bangladesh. I show how
heterogeneity emerges on either side of the border, in part because of each national government’s
role in promulgating information technologies — a rich national technology agenda leads to
more resources but also a greater surface area for criticism, in contrast to a relative vacuum of
policies in Bangladesh. I end the chapter by showing how the issues with Unicode’s encoding of
khanda ta are received by these open source communities. When issues like khanda ta appeared
on their radars, they approached them from a technical mindset: a bug with the Unicode
Standard that needed fixing.

Free and Open Source Software (FOSS)

Sayamindu was posting his email in 2002 to two mailing lists, the freebangfonts listserv and
another called bengalinux. These were virtual communities set up that year to work towards the
goal at the close of the email: building a Bangla language desktop.

The members of these groups were keen on building with free software. What was free software?
It was “software that respects users’ freedom and community…it means that the users have the
freedom to run, copy, distribute, study, change and improve the software.” As the refrain went, 146

it was software that was free in the manner of speech, not beer. A user could look at the code,
tinker with it, and even re-distribute their adapted version. Unlike a Windows or Apple operating
system, for example, free software empowered its users with a certain level of control and
purported to exist outside of the market economy.

The free software movement began in 1984 when Richard Stallman published the GNU
Manifesto. Stallman had been an MIT engineer working at the artificial intelligence lab. His 147

vision was of a full operating system and suite of applications that contained no proprietary
components. The GNU system (GNU being a recursive acronym for “GNU’s Not Unix!”) would
essentially be a free version of AT&T’s Unix operating system. Though Stallman had developed
nearly all the parts by 1991, it was the development and integration of the core component – the
kernel – by a Finnish undergraduate student, Linus Torvalds, that completed the project that
year. 148

 “What Is Free Software? - GNU Project - Free Software Foundation,” accessed June 29, 2022, https://www.gnu.org/philosophy/146

free-sw.en.html.

 Richard M. Stallman, Free Software, Free Society: Selected Essays, ed. Joshua Gay, 1st. ed (Boston, Mass: Free Software Foundation, 147

2002), 33.

 Stallman, 174.148

54

https://www.gnu.org/philosophy/free-sw.en.html
https://www.gnu.org/philosophy/free-sw.en.html

Through the 1990s, the Linux project epitomized a new orientation towards producing goods:
undirected co-production. There was virtually no difference between builder and user; each
would identify and remedy the bugs that they could; all would benefit from differentiated
skillsets of a large class of contributors. This model was characterized as “the Bazaar” by Eric
Raymond, a self-proclaimed hacker, and contrasted against “the Cathedral” of corporations,
where chosen experts doled out software improvements less efficiently and with lower quality. 149

Stallman and Raymond would represent two approaches to the production of viewable,
modifiable, distributable code. Where Stallman would emphasize the liberatory potential of free
software for all of society (sometimes referencing it as libre software, as opposed to gratuit),
Raymond wanted to emphasize its practical benefits of open source software for the software
industry. 150

Indeed, by the year 2000, Raymond’s views had caught the attention of business people, policy
makers, and scholars. The industry had been rocked just two years earlier when Netscape
announced it would release the source code of its browser. The signal from a major technology
company that it could be advantageous, rather than ludicrous, to make public the secret recipe
for its product was revelatory. Over the coming years, much ink would be spilled over whether 151

other companies should ‘open source’ their products, how coordination worked in this leader-less
model, and why people were freely contributing their high-skilled labour in the first place. 152

Over time, the distinction between free and open source software would be relegated to niche
ingroup discussions, and be subsumed by contemporary terms such as FOSS (free and open
source software). 153

An idealized type emerged from these works. Eric Raymond, who fashioned himself hackerdom’s
ethnographer and tribal historian, wrote simply, “Hackers solve problems and build things, and
they believe in freedom and voluntary mutual help.” He would also coin “Linus’ law,” which 154

claimed that, with enough eyeballs, are bugs were shallow. He essentially espoused an ethic of
self-interested cooperation. Though this “hacker ethic” has mostly been envisioned in the

 Eric Raymond, “The Cathedral and the Bazaar,” accessed June 29, 2022, http://www.catb.org/~esr/writings/cathedral-bazaar/.149

 Eric Raymond, “The Magic Cauldron,” accessed June 29, 2022, http://www.catb.org/~esr/writings/cathedral-bazaar/magic-150

cauldron/.

 Ibid.151

 See Steven Weber, The Success of Open Source (Cambridge, Mass.: Harvard University Press, 2005); Christopher M. Kelty, Two Bits: 152

The Cultural Significance of Free Software, Illustrated edition (Durham: Duke University Press Books, 2008); Yochai Benkler, “Coase’s
Penguin, or, Linux and ‘The Nature of the Firm,’” The Yale Law Journal 112, no. 3 (2002): 369–446, https://doi.org/
10.2307/1562247.

 It is notable, however, that Sayamindu used the Bangla word mukti with respect to software, referencing freedom rather than no-153

cost.

 Eric Raymond, “How To Become A Hacker,” accessed June 29, 2022, http://www.catb.org/esr/faqs/hacker-howto.html.154

55

http://www.catb.org/esr/faqs/hacker-howto.html
http://www.catb.org/~esr/writings/cathedral-bazaar/
https://doi.org/10.2307/1562247
https://doi.org/10.2307/1562247
http://www.catb.org/~esr/writings/cathedral-bazaar/magic-cauldron/
http://www.catb.org/~esr/writings/cathedral-bazaar/magic-cauldron/

literature as a Western archetype, much of it rings true for the South Asian actors presented
here. 155

Sayamindu Dasgupta’s trajectory tracked those of many self-proclaimed hackers in the early
2000s. He had gotten a computer at home in 2000 or 2001, he guessed: “I don’t think I’m
exaggerating when I say, getting a computer at home and starting to tinker with it was a
lifechanger for me.” The broadband was spotty at home, but he still found going online a 156

“fascinating experience.” His journey into open source was also somewhat accidental. Every year
he would go to the Kolkata book fair, and that year he happened to pick up a book about Linux
there. It wasn’t easy to figure out how to get the modem to work when he installed Linux at
home, and that’s when he came across the local Linux user group. Linux user groups had been
forming around the world for this express need: trouble-shooting the somewhat finicky systems,
much of which still lacked documentation. Though Sayamindu figured out how to solve his
problem himself, he realized that others were facing the same challenges. So he began writing up
HOW-TO documents – his first contributions to the world of open source. 157

From there, he was joining several communities, meeting both in-person and online, on language
and open source. He met in person with the Kolkata Linux User Group (ilug-cal) and found the
bengalinux and banglapenguin groups online. These last two groups, in particular, were
interested in building a Linux interface in Bangla. As they chatted it became clear, however, that
before they could begin any translation, they needed to have a working Bangla font that was free
to use and distribute. With that goal in mind, Sayamindu volunteered to create the Free Bangla
Fonts (freebangfonts) project. The first font he created for freebangfonts would be what he 158

would use in the fully-Bangla email one month later.

Free Bangla Fonts

Sayamindu was no artist, but he was comfortable with the ways of open source projects –
borrowing and repurposing from others as needed, and paying it forward. It was a strikingly
different model than commercial software at the time, which was bent on filing patents, crushing
or swallowing up the competition, and locking in customers to proprietary technology stacks. 159

Instead, free and open source software (FOSS) followed what Yochai Benkler calls a “commons-
based peer production” model, in which individuals coordinated with each other on large-scale,
complex tasks towards a common good. Strikingly, there was little formal direction behind 160

 Kelty, Two Bits; E. Gabriella Coleman, Coding Freedom: The Ethics and Aesthetics of Hacking (Princeton: Princeton University 155

Press, 2012).

 Dasgupta, Sayamindu, interview with author, April 17, 2020.156

 Dasgupta, Sayamindu, interview with author, July 3, 2019.157

 Dasgupta, interview, April 17, 2020.158

 See Microsoft’s leaked “Halloween documents.” accessed June 29, 2022, http://www.catb.org/~esr/halloween/.159

 Benkler, 2002.160

56

http://www.catb.org/~esr/halloween/

these projects; self-interested individuals could proceed on their own, so long as previously-
completed building blocks were well-documented, modular, and publicly available.

Thankfully, some earlier building blocks were there for Sayamindu to grab when he began the
Free Bangla Fonts project. He found an open source font that seemed to be drawn by a physics
professor in Kolkata, Professor Palash Baran Pal. Professor Pal was at the Saha Institute of
Physics, and had developed a package, called Bangtex, for the popular document preparation
system, Latex. Latex built upon the Tex typesetting software, which had roots in both digital 161

typography and open source software. Tex had been developed by Donald Knuth in 1978, after
he got frustrated with the new phototypesetting technology that was being used to typesetting
the latest edition of his textbook, The Art of Computer Programming. Tex was the result of 162

Knuth’s tinkering with novel digital typesetting systems, though it remained relegated to mostly
scientific settings rather than reaching PostScript or OpenType’s widespread adoption.

Professor Pal had developed the Bangtex typesetting system that allowed the user to develop
multilingual documents including Bangla text. The font glyphs were available as a separate file
within the package and were licensed as a free software font. Sayamindu could open up the font,
copy the glyphs, and paste into other programs to format them as Unicode fonts. The software
license made the contents free to use, modify, and distribute, so Sayamindu never had to get in
touch with Professor Pal at all. “I was just kind of intimidated,” he recalled in an interview. The
two met briefly many years later when Pal was a featured speaker at a science camp Sayamindu
was attending, but even then their interactions involved other topics (“radio carbon or
something”). 163

Pal’s glyphs served as the artwork, but there was still a sizable programming task involved in
developing a Unicode-compliant, OpenType font. Glyphs needed to be matched to Unicode
codepoints. Information about positioning and substitutions needed to be filled into OpenType
tables. It all needed to be done in a way that Microsoft’s rendering software could process. There
were two tools around to help with this process: an open source font design tool called PfaEdit,
later renamed FontForge, and Microsoft’s own software, called the Visual OpenType Layout Tool,
or VOLT.

Sayamindu worked mostly in PfaEdit to build his first font, which he called Akaash, or “sky.” On
October 15, 2002, he posted the font on the freebangfonts homepage and shared it with his new
colleagues in the Bengalinux project. 164

 Palash B. Pal, “Bangtex,” 2001, http://www.saha.ac.in/theory/palashbaran.pal/bangtex/bangtex.html.161

 Donald E. Knuth, Digital Typography, Reissue edition (Stanford, Calif: Center for the Study of Language and Inf, 1998). 5.162

 Dasgupta, interview, April 17, 2020.163

 Dasgupta, Sayamindu, “[Bengalinux-core] Akaash-0.5” October 15, 2002.164

57

http://www.saha.ac.in/theory/palashbaran.pal/bangtex/bangtex.html

Figure 21. Snapshot of the Free Bangla Fonts Original Website (Wayback Machine)

Bengalinux

Just a few months prior, Taneem Ahmed had begun thinking about starting the Bengalinux
mailing list. He too had been lucky to have been exposed to computers in Bangladesh at a young
age. His uncle had been working abroad and introduced Taneem to them in the mid-90s. He 165

was also an early supporter of the first Bangladeshi magazine on computers, Computer Jagat, or
“Computer World.” Computers were still mostly conceived in the context of computation – used
by banks and NGOs – or increasingly, desktop publishing. The idea of computing for
communications, for connection, didn’t resound to Taneem until he immigrated to North America
to start his engineering degree in 1996. There, he learned about open source software, and about
dial-up internet. He worked in the research lab of Professor Steve Mann, one of the early
proponents of wearable technology. Taneem had been part of his lab during the creation of the
traveling art installation, “SeatSale: Seating Made Simple.” This chair was free to use, so long 166

as you had a paying subscription; once your subscription expired, jagged spikes would rise up
from the seat. As Mann later described in an article, “The word “free” is used with jest, in the
sense that although there is zero monetary cost… the true cost is the loss of privacy and the loss
of freedom to sit without asking for permission from a global Seating Services™ provider.” 167

It wasn’t until Taneem arrived in Silicon Valley after graduating that he began working earnestly
on building open source software. He started by pushing a change to the GNU C library, a

 Ahmed, Taneem, interview with author, February 16, 2020.165

 Ibid.166

 Steve Mann, “Existential Technology: Wearable Computing Is Not the Real Issue!,” Leonardo 36, no. 1 (February 2003): 19–25, 167

https://doi.org/10.1162/002409403321152239.

58

https://doi.org/10.1162/002409403321152239

codebase that was used by multiple Linux distributions, to make it possible to create a Bangla
locale. Though the dot-com bubble had recently burst, there was still a palpable energy and 168

optimism in the region. “You suddenly start seeing the huge impact of the internet and the web.
You realize the way people are sharing and storing information. It’s not about libraries and books
anymore,” he recalled. He felt anxiety about what communications scholars have termed the 169

bias of communication: unless literature was translated into hardy mediums – digital bytes rather
than fragile paper books – then their content might be lost to future generations. There was so 170

much Bengali literature to save; though he felt sure that “Rabindranath and Nazrul will survive,”
he felt that “other poets and songwriters – their work will be lost. If it’s not online, you don’t
exist.” This was an aspect of multilingual computing that sometimes becomes lost; digital fonts 171

are needed not only for contemporary communication, but to make it possible to digitize records
of the past.

It was a similar thought that had motivated Deepayan Sarkar to start his Bengali archive project.
In fall 2002, Deepayan was a PhD student in statistics at the University of Wisconsin-Madison. He
intended for his literature archive to be similar to Project Gutenberg – records of public domain
Bengali literature, stored and viewable on the internet. 172

At first glance, the project seemed easy enough: “this was just a matter of typing up whatever I
had the time and inclination for,” he wrote in a memoir. But of course, in practice there were 173

many technical challenges, the foremost of which was having a reliable, usable font in which the
text would appear. Like Sayamindu, Deepayan had searched for previous examples, coming
across proprietary fonts that a site visitor might not have loaded on their computer and Unicode
fonts that were not free to use. So he too began developing his own font, Likhan (“writing”).
Likhan was drawn in PfaEdit and engineered to be an OpenType font in Microsoft’s VOLT. The 174

reliance on Microsoft’s tools at this point was significant; there was no way to fully work in an
open source software stack and build a high-quality font (though Sayamindu had given it a try
with Akaash).

Taneem, Deepayan, and Sayamindu had found each other simply by Googling for others working
on Bangla computing. The group found another Indian Bengali expat studying in the US, Kaushik
Ghose, who had built a text editor called Lekho (“Write”), though it was not yet Unicode-
compatible. Their efforts were all proceeding independently, but Taneem saw the common goal,
of creating a full operating system in Bangla. He reached out to each person and wrote, “Instead

 Ahmed, interview.168

 Ibid.169

 Harold A. Innis, The Bias of Communication (Toronto: University of Toronto Press, Scholarly Publishing Division, 1999).170

 Ahmed, interview.171

 Sarkar, Deepayan, interview with author, June 16, 2021.172

 Deepayan Sarkar, “Bangla Computing and I,” 2020, https://deepayan.github.io/misc/bangla-computing.173

 Ibid.174

59

https://deepayan.github.io/misc/bangla-computing

of me writing an editor, and you writing a font, maybe we do this together in a more organized
way.” What would it take to support Bangla properly on Linux? Could they put their different 175

pieces together? He officially started the bengalinux mailing list in September 2002 and put up a
webpage hosted on SourceForge.net with their tools and intentions. The existing projects would
each maintain their own mailing lists and names – Taneem was not trying to “grab other people’s
work under some umbrella” – but would try to work together. This too epitomized the open 176

source ethic: light touch coordination to build complex systems for the public.

Figure 22. Snapshot of Bengalinux Website (Wayback Machine)

Within the first few months, the group had grown in count to seven. Some had common 177

pathways into caring about language technology. Like most city-dwellers in South Asia, they had
taken English-medium classes throughout grade school and knew how to type in Latin letters.
But like all members of that generation, they had also grown up in the shadow of the Bangla
language movement and the Bangladesh Liberation War, even across the border in India. In
2001, the United Nations had recognized the bloodshed over the Bangla language by
commemorating February 21st of every year as International Mother Tongue Day. February 21st
was a watershed date from the year 1952, when Pakistani police shot into a crowd of students on
Dhaka University’s campus. The students had been doing daily processions in protest of the
national government’s policy to recognize only Urdu as Pakistan’s national language, despite

 Ahmed, interview.175

 Ibid.176

 “The Bengali Linux Project.” http://web.archive.org/web/20021212083656/http://bengalinux.sourceforge.net/projects/ 177

60

http://web.archive.org/web/20021212083656/http://bengalinux.sourceforge.net/projects/

Bangla being the majority language of East Pakistan. After the death of four students, February
21st, or “Ekushey February” would be honored every year as Martyr’s day.

For Sayamindu, he had grown up hearing about the importance of one’s mother tongue, but had
also been exposed to scholarly communities recognizing the importance and beauty of Bangla
growing up. His father had been a language scholar, publishing primers for French speakers to
learn Bangla. His mother was a Comparative Literature professor at Jadavpur University in
Kolkata. Between the early exposure to computers and the immersion in academic communities,
he naturally found himself circling the question of how to write Bangla on computers. 178

For others like Taneem, there was a much more personal tie to Bangladesh’s political history. His
father had been a senior officer in the 1971 Liberation War, a nine-month guerilla war that
eventually resulted in the creation of Bangladesh as an independent country. The decades
afterward did not pass smoothly, however, as alternating claims for political power in the new
country led to assassination and violence against perceived supporters of the opposing side.
Taneem’s father was executed in 1991 as a casualty of this power struggle. It wasn’t a backstory
Taneem spoke about often, but it was an important experience for him. He had his father’s
letters, and he felt he had an important connection to Bangladesh. “I’m not a very cultural person
- I don’t sing or write. I don’t think I’ve ever fully written a Bengali letter or email,” he told me.
“But I’m a technical guy and I felt I should be able to help here.” With Bengalinux, his motivation
was just to find people who could work together, and “just go ahead and do it.” 179

What was it like to “go ahead” and build Bangla language technology in the early 2000s? It was
possible but not easy. As Deepayan wrote on his original project homepage,

Hypothetically speaking, a Bengali `document' can be stored in several forms. For example,
they might be just images, or perhaps PDF files. However, one of the aims of this project is to
use standards that are open, cross-platform, and widely recognized, as well as
appropriate for the task at hand. A few years ago, it might have been difficult to meet
these criteria, and even now, the only platform on which this will work exactly as intended is
Microsoft Windows. However, the standards that are used are indeed open and widely
recognized, it is only the lack of implementation that prevents users of other systems from
seeing the results as seamlessly. 180

This message spoke to the primary challenge of building local language technology in the early
2000s. The critical advancements had been made: industry-accepted standards that would
theoretically support the world’s scripts. But the rest of the stack was lagging. Microsoft’s
rendering engine for complex scripts, Uniscribe, was incorporated into Windows 2000 and

 Dasgupta, interview, April 17, 2020.178

 Ahmed, interview.179

 Sarkar, Deepayan, ”Bengali Literature Archive.” http://web.archive.org/web/20021208180443/http://www.stat.wisc.edu/180

~deepayan/Bengali/WebPage/bengali.html

61

Windows XP. Layout support was coming but uneven across Microsoft applications, as different
teams worked independently on each application, from the word processor Microsoft Word, to
the web browser Internet Explorer, to the mail client Outlook. 181

At this time, in 2002, the only popular application that supported Bangla text layout – meaning
the software knew how to deal with Unicode encodings and OpenType instructions, and turn
them into properly displaying Bangla text – was Internet Explorer. But this at least gave the 182

Bangla computing folks a place to start. If they could develop a Unicode, OpenType-compliant
font, then they could use Internet Explorer to see Bangla. After that, they could work on getting
similar support in the open source applications they used, on Linux systems.

Like Sayamindu and Taneem, Deepayan preferred to work in Linux. Unfortunately for the group,
there wasn’t much coordination or standardization beyond the OpenType font format. Those
using Linux or Apple systems, or even non-Microsoft applications like Adobe Photoshop, had to
wait for or build their own rendering engines and layout technologies to get Indic scripts to
work. And as the previous chapter discussed, these technologies were heavily informed and
dependent upon how Unicode and OpenType were defined for a given script. Microsoft was
planning to release the Bangla specification of OpenType in 2002, but as the hobbyists would
note, it was still just a “spec, not even a standard” —- they had to trust that Microsoft would
maintain it or that patents would not be evoked against it. This state of affairs again pointed 183

to the concentration of power in the software industry in the early 2000s. Everyone had to follow
Microsoft, even those trying to work outside of it.

This was evident in the process for building OpenType fonts. The open source font design tool
PfaEdit provided an interface to draw the artwork, but it didn’t yet support OpenType layouts.
For this, the font designers had to download Microsoft’s own tool, which only worked on their
Windows operating systems. Deepayan used a student rebate to purchase Windows for this
purpose alone, using dual boot to run both Linux and Windows operating systems on his
machine. He would design most of the font on Linux using the open source tool PfaEdit, do 184

the font engineering in VOLT on Windows, then switch back to PfaEdit to make minor changes –
software that wouldn’t destroy, at least, OpenType-engineered fonts.

As the previous section highlighted, after the font layer, the multilingual computing stack had
several intertwining pieces that needed to be developed in concert with one another: the
rendering engine, which provided instructions for how to read the OpenType tables inside the
font, and the layout technology, which was embedded in individual applications and drew from
the rendering engine to ultimately display the text.

 Paul Nelson, interview with author, March 24, 2022.181

 Sarkar, Deepayan, ”Bengali Literature Archive.”182

 Dasgupta, interview, April 17, 2020.183

 Sarkar, interview.184

62

Microsoft had its own proprietary rendering engine and layout technologies to display fonts. The
bengalinux members would try to build fonts that would work with Microsoft’s Uniscribe
rendering engine and Internet Explorer’s layout technology.

But for Linux, they had several more moving targets. “Linux” itself referred more precisely to the
Linux kernel, the open source piece of software that was originally developed by Linus Torvalds
and released in 1991. Every computer has a software “kernel” which speaks to the computer
hardware, performing essential tasks like memory management. Different initiatives have used
the open source Linux kernel over time, and built their own software on top of it to create
independent operating systems and applications. When the Linux kernel was combined with
software packages like a desktop environment, internet browser, and other utilities, it was called
a “distribution,” or “distro” for short. One of the most famous examples of these was Richard M.
Stallman’s GNU/Linux distribution. Other major distros using the Linux kernel included Fedora/
Red Hat, Ubuntu, and Debian.

Though these distros are often referred to offhandledly as “Linux,” in truth they were different
operating systems with their own options of “desktop environments” – what the user saw when
using their computer. Each desktop environments used a different Graphical User Interface (GUI)
toolkit. Some Bengalinux members used the GNOME desktop environment, which used the GTK
GUI toolkit. Others preferred the KDE desktop environment, which used the Qt GUI toolkit. The
GUI toolkits, in turn, used different rendering and layout technologies for text. GTK used a
separate open source library called Pango to render and lay out text. Qt had its own layout
engine. Finally there were popular open source applications like Open Office that had entirely
independent rendering and layout technologies. 185

It is easy to get lost in the acronyms of the Linux universe and the various layers of
interdependent technologies. But the important takeaway for Bangla computing developers was
that there were several different targets for their fonts. They could design a Unicode, Open-Type
compliant font that worked with Microsoft’s rendering and layout technologies, but was still
buggy in many versions of Linux due to different OpenType implementations in Pango or Qt.

Though the flexibility and modularity of Linux systems was the boon that allowed localization
teams around the world to begin developing local language software before giants like Microsoft
began supporting them, those same qualities meant the source software could be unstable and
error-prone. This state of affairs would lead to trouble later on, including on the issue of khanda
ta.

Despite the challenges, the motivated group pushed ahead to design imperfect, but workable,
Bangla OpenType fonts. By mid-November, 2002, three free Bangla fonts had been published.
The group was admittedly pleased.

 Sarkar, interview.185

63

From: Kaushik Ghose
To: Free Fonts
Date: 11/10/2002 12:55:48 AM

So, does that make it 3 bangla OTFs now ? Mukti, Likhan and Aakash ?
And we had zero (0) 3 months ago, is that right ?
And they said bengalis were lazy.
I guess we've become corrupted...
-kg 186

Broader networks

Through 2002, both Taneem and Sayamindu were working to grow the number of members in
the group. On the Bangladeshi side, Taneem reached out to the Bangladesh Linux Users Group
(bdlug). Though there were plenty of subscribers, the topics of discussion were focused on using
Linux for networking purposes: routers, firewalls, email servers. Most of the active members 187

were working at different internet service providers. Taneem tried to appeal to the potential for
alternative use-cases for Linux, such as building a Bangla desktop. Beyond recruiting Jamil
Ahmed, who, after receiving help from Taneem multiple times with setting up Linux for his office
job, joined the Bengalinux project, bdlug brought in only occasional support. 188

Sayamindu found more luck on the Indian side, particularly as his interaction with the Kolkata
Linux User Group grew (ilug-cal). It was through ilug-cal that Sayamindu learned of the Indic-
Computing conference that was being planned for September 2002. The Indic Computing
Conference was the first major event planned by the indic-computing mailing list that had
started the year prior. The Indic Computing Conference brought together representatives from
several regional initiatives focusing on building local language computing.

It promulgated the same goals as the indic-computing mailing list itself. As the public spiel said,
“The main purpose of this workshop is to build a community of people working in the space of
developing local language development tools, applications, and content, to better coordinate
their ideas and approaches towards the future of indic-computing.” The agenda included talks 189

on the experiences of practitioners, those using local language technologies; walkthroughs of
how encodings, text display, and input methods worked; and perspectives from those conducting
linguistic analysis. 190

 Ghose, Kaushik, “re: [Freebangfont-devel] Mukti Set of Fonts” Email, November 10, 2002.186

 Ahmed, interview.187

 Jamil Ahmed, interview with author, September 2, 2020.188

 Kotamkar, Ashish. “Indic Computing Workshop.” Email, September 2, 2002.189

 Ibid.190

64

The indic-computing mailing list had been created in December 2001. The people who created 191

it were already involved together in another project and mailing list called IndLinux. IndLinux
had much the same goals as Bengalinux - to create Indian language desktops in GNU/Linux. 192

There were people in industry, however, who were also interested in guiding and supporting
these efforts, such as Joseph Koshy whose day job was working in the private sector, at Hewlett-
Packard Bangalore. But in the evenings, Koshy was a regular contributor to the FreeBSD 193

project, another open source Linux distro. Others like Guntupalli Karunakar or Tapan Parikh
were current or recent graduates, keen on enabling local language computing, searching for an
enticing project to work on. Parikh, in particular, had travelled back to India for an internship 194

in the middle of his doctoral program at the University of Washington, and had felt he had
stumbled onto an issue important enough to change the direction of his research. Koshy and 195

Karunakar, along with a few colleagues, were interested in supporting collaboration between all
of the people working in the language technology space. The indic-computing listserv was
conceived to fulfill this purpose. Though their members would encourage the development free
and open source software, the goal of this group would be to do information-sharing and
agenda-setting; groups like IndLinux or Bengalinux could then go forth and build the actual
software.

Sayamindu attended the September conference on behalf of the Bengalinux folks, and wrote a
short whitepaper summarizing the state of Bangla computing to date. He had been 196

volunteered to attend by his Bangla computing compatriots. “I was incredibly scared. I was the
youngest person in the group… they signed me up. I said I have my [high school] exams, I’ll try
to make it.” 197

 Karunakar, Guntupalli, personal communications to author, April 18, 2022.191

 “IndLinuxSaga - IndLinux,” accessed June 29, 2022, https://www.indlinux.org/wiki/index.php/IndLinuxSaga.192

 Karunakar, personal communications.193

 Karunakar, personal communications.194

 Parikh, Tapan. “[Indic-computing-devel] What are people working on?” Email, December 27, 2001.195

 Dasgupta, Sayamindu. “Bangla in GNU/Linux.” Indic-Computing Workshop. https://sourceforge.net/projects/indic-computing/files/196

workshop-proceedings/bangalore-september-2002/

 Dasgupta, interview, July 3, 2019.197

65

https://www.indlinux.org/wiki/index.php/IndLinuxSaga

The conference seemed to accomplish its goals. The two-day workshop was where the group
evolved from a virtual space to a real-life community that knew each other by face. It also
successfully brought together folks from free software and private industry; in attendance were
representatives from the Free Software Foundation and the Sarai Institute, as well as from
Hewlett-Packard and Microsoft. For Sayamindu, a strong believer in free software, the 198

assortment of people at the conference puzzled him. “It was the late 90s. Microsoft was already
the enemy. These organizers were sensible to invite people from Microsoft who seemed
supportive, but it was weird to hang out with them.” The list of attendees also notably 199

included a number of names who had indicated interest but could not attend, many of which
included representatives from Unicode’s core staff. Bengalinux had mostly been working in 200

isolation, with some communication with other open source hobbyist groups. But the Indic-
computing folks were bringing in players with much more institutional authority — private
sector leaders, government officials, academic researchers. The difference in participants
represented a difference in goals, as well as a difference in the playing field between India and
Bangladesh, which I discuss more in the section below.

Indic-Computing

The ethos of the indic-computing group was to encourage India’s leaders to adopt the tools that
would let India join the emerging global digital ecosystem, and thereby enrich itself. The
communities they sought to bring together were stratified in two different ways. The first was
the obvious splitting by different regional and language communities. Like the Bengalinux
project that would form a year after for the Bangla language community, there were others
beginning to fruit around Tegulu, Tamil, Marathi, Hindi, Kannada, and Malayalam.

But the indic-computing leadership was also aware of stratification by affiliation: there were
those coming from academic or research backgrounds, who were working at universities like IIT
Madras, Hyderabad, and Kanpur and at government agencies such as the National Center for
Software Technology (NCST) or the Center for Development of Advanced Computing (CDAC).
These academic groups were perceived as “mainly working in a closed way”, and having had
“years of experience in Indian computing area but small teams with no long term goals.” 201

These contrasted against the groups that were volunteer-based, such as Indigo or IndLinux.org.
This second group was made up of initiatives that were part of the free software movement; they

 Noronha, Frederick, “[Indic-computing-users] IndicComputingNotes: Links, comments from overseas…” Email, September 20, 198

2002.

 Dasgupta, interview, July 3, 2019.199

 Noronha, “[Indic-computing-users] IndicComputingNotes: Links, comments from overseas…” Email.200

 Karunakar, Guntupalli, “[Indic-computing-standards] generic issues - first post.” Email, December 7, 2001.201

66

lacked experience, but had “clear long term goals and a big community of developers to depend
on.” 202

There was little existing coordination between the academic researchers and the free software
folks. The lack of coordination was slowing the development of “future-proof” Indian language
computing — software that abided by the open standards that the group’s leadership believed
would structure all digital communications. Being able to typeset in an Indian language on a
desktop was no longer enough. One needed to be able to communicate - be able to send that text
in a document or email or webpage, and know with certainty that someone on the other side
would be able to view it. This ability to communicate depended on common codes and common
standards - this was the problem that Unicode was designed to solve. It was a contrast against
the graphical or font-based encoding systems that had been profilerating throughout South Asia
since the coming of desktop publishing. These proprietary systems had a small but important
benefit – they were able to display the text appropriately, a problem that Unicode had only begun
to solve. The OpenType format brought networked computers one step closer to being able to
display Indic text properly, but in the early 2000s, its usefulness was still more idea than impact.

There were two pushes the indic-computing leadership was trying to make to change the status
quo. For the FOSS groups working on building local language desktops, they advocated for more
documentation and knowledge-sharing. They were all contending with the same issues: 203

interpreting the Unicode Standard and OpenType specifications to build a compliant font;
hacking font development tools like PfaEdit to get them to work with Indic OpenType fonts;
programming keyboards that could handle the multiple codepoints combinations that Unicode
often assigned to represent a single Indic character; and lobbying applications and rendering
libraries to bring in script-specific support. 204

Greater documentation and communication could speed up the work of existing volunteers, and
make it easier for new folks to dive in. As Karunakar wrote in an early agenda-setting email,

Most free software projects have started outsite India , so core teams composition is basically
non indian, so although their project have support for western & eastern scripts, not much
support is there for Indic scripts, since the team members are not knowledgebale enough abt
our scripts. So we need to play our part there in helping them. 205

But for many of the “legacy” institutions working on Indic computing, the call was for them to
build on open standards, and release software that was free to use and distribute. Many of these
stakeholders were still resistant to Unicode or OpenType. Tapan Parikh wrote an impassioned
plea on this topic in April 2002, in an email entitled, “New Blood - Forget the Establishment,”:

 Ibid.202

 Karunakar, “[Indic-computing-standards] generic issues - first post.” Email.203

 Ibid; Proceedings of Indic-Computing Conference. https://sourceforge.net/projects/indic-computing/files/workshop-proceedings/204

bangalore-september-2002/

 Karunakar, “[Indic-computing-standards] generic issues - first post.” Email.205

67

All,

I am usually very polite with other people's obserations and views. I feel I have to say this
now because right now I am very frustrated with the kinds of things being discussed and
proposed at these types of meetings, and am letting my emotions get the best of me. Sorry in
advance.
[We] were at a discussion at IIT-Powai where similar non-issues were re-hashed for hours. I
wanted to yell. How long can we continue to talk and whine about technical non-issues? Are
these people serious when they are basing all of their work on a font standard rather than a
character standard? Can they not see the direction the rest of the world is going, with Open
Type Fonts and Unicode? Do they feel we will somehow be using completely different and
independent applications, operating systems, programming languages, libraries, APIs, etc?
Do they not understand the power and benefits of interoperability?

Will India always be this way?...

As a technician it is hard to fight against these politics, vested interests, and ego wars. But
we cannot allow it. We have to make sure technically-informed decisions are made. We
must, it is our moral responsibility as technical leaders. 206

It was no accident that this call towards technical openness took on a particular moral and
nationalist tenor – “Will India always be this way?” – one that was missing in the bengalinux
group, despite similar appreciation of and adherence to open source principles. Over the past
half century, India’s technology sector had been a central focus of the national policy, leading to
several decades of “indigenous computing” and bureaucratic mishaps. For the young generation
of technicians, the inwardness and policies of indigenous technology had been tried and failed
over the past half-century; they felt responsible for charting a new path. As Parikh wrote in his
impassioned message, there was a “moral responsibility as technical leaders” to avoid repeating
these mistakes. 207

India’s Indigenous Computing Policies

I pause here to provide a historical narrative of India’s nationalist development policies, through
the late 20th century. These policies are relevant in characterizing the milieu in which hobbyist
groups such as Indic-computing and Bengalinux arose; these groups were not only emblems of
the global open source software movement, but can be seen as reactions to their local contexts of
development. This context can help us understand why the particular stance of open source
hobbyists in this region is towards openness and interconnection with the West, in contrast to

 Parikh, Tapan, “[Indic-computing-standards] New Blood - Forget the Establishment” Email, April 11, 2002.206

 Ibid.207

68

protest and withdrawal or a sense of subjugation to the West , as other case studies of FOSS 208 209

communities in the Global South have shown.

When India achieved independence in 1947, Prime Minister Jawaharlal Nehru found a fractured,
impoverished country on his hands. A wealthy, Western-educated lawyer with an interest in
Soviet-style central planning, Nehru sought out to modernize India. He cultivated relationships
with key entrepreneurs, industrialists, scientists, and academics, empowering them to build out
space, nuclear, and electronics research institutes. The first five Indian Institutes of Technology 210

(IITs) were set up between 1951-61. (These would be supplemented by 18 more between 1994
and 2016), as well as the first two Indian Institutes for Management (IIMs) in 1961. Though 211

the other outcomes of a self-reliance—inspired industrial policy are considered to have had
adverse outcomes on India’s growth, the establishment of these foundational research and
educational institutions have been hailed by scholars as a “bright spot” in Nehru’s plans. 212

Indeed, in the history of multilingual computing, the IITs would become the grounds where ISCII
and other Indian language technologies would begin being developed.

The next era in India’s technology trajectory began in 1966, when the recently created
Electronics Committee released a report laying out three goals for “indigenous industry”:

1. India should participate in the ownership and control of foreign computer subsidiaries in
the country

2. Wholly Indian producers should come to satisfy most of the country’s computer needs,
with foreign units only temporarily supplying exotic technologies and large systems

3. India should participate in the manufacturing of advanced systems available
internationally 213

In sum, India should own the foreign subsidiaries that lay inside its borders, have home-grown
producers of computers, and participate in the international supply chain. At the time, there were
two international computer companies with sales and manufacturing activities in India: the
American company IBM and British company ICL (international Computers Limited). Over the
next decade, the Indian government would pressure both companies to share ownership of its

 Anita Chan, “Coding Free Software, Coding Free States: Free Software Legislation and the Politics of Code in Peru,” 208

Anthropological Quarterly 77, no. 3 (2004): 531–45.

 Yuri Takhteyev, Coding Places: Software Practice in a South American City (Cambridge, Mass: The MIT Press, 2012).209

 Ramesh Subramanian, “India and Information Technology: A Historical & Critical Perspective,” Journal of Global Information 210

Technology Management 9, no. 4 (October 1, 2006): 28–46, https://doi.org/10.1080/1097198X.2006.10856431.

 Ibid.211

 Subramanian, 2006.212

 Ibid; Joseph M. Grieco, “Between Dependency and Autonomy: India’s Experience with the International Computer Industry,” 213

International Organization 36, no. 3 (1982): 609–32.

69

https://doi.org/10.1080/1097198X.2006.10856431

local activities with Indian nationals. ICL would make concessions after intense negotiations, but
IBM would opt to instead withdraw from the country, which it would do in 1977. 214

At the same time, the Indian government set up the Electronics Corporation of India Limited
(ECIL) to advance indigenous manufacturing of computers, in pursuit of its second goal from the
1966 Electronics Committee report. Part of the issue with IBM had been their policy of only 215

gradual upgrades for developing countries. While the rest of the world was using advanced IBM
360s and 370s, the Indian government was only being offered IBM 1401s. It was difficult for 216

India to locally build these large mainframes. In the 1970s, the policy instead shifted towards
buying a limited number of large systems from Britain’s ICL, while simultaneously shifting
towards minicomputer architectures that could be designed and assembled locally (“Indigenous
assembly”). However, these efforts did not find much success. As Subramanian writes, 217

Despite IBM's faults, its presence had brought in ideas and processes for greater efficiency,
and a talented, well trained and quality-minded sales and maintenance force. At the time of
IBM's departure, India's home-grown efforts at developing computers was not producing
much results…ECIL developed its own non-standard software which it could hardly sell.
India was thus confined to the dark ages of computer development. 218

Where the establishment of research centers by Nehru in the 1950s spurred innovation and
research, the indigenous computing policies of the 1960s and 70s seemed to stifle it in the
private sector.

By the late 1970s many international competitors to giants IBM and ICL had emerged,
particularly as mini- and micro-computer architectures became able to perform the same
functions as mainframes at a cheaper cost. These competitors were well-suited for Indian 219

markets. However, these international imports were heavily gatekept by the Department of
Electronics, created in 1970. If any organization wanted an advanced computer, they had to seek
permission from the government agency, which would decide which computer the organization
would be allowed to import. Users needed to show they had a different use case than what ECIL
computers could provide. ECIL computers were still very costly and had long delivery delays, on
the order of 1-2 years — by the time they arrived, they were already outdated and perhaps
missed the initial purpose for which they were ordered. 220

 Ibid.214

 Ibid.215

 Ibid.216

 Ibid,217

 Subramanian, 38.218

 Grieco, 1982.219

 Ibid.220

70

This set of affairs was termed “Permit Raj,” a play on the colonial-era administration, the British
Raj. The perception was that government policy was stifling innovation and productivity. 221

There was widespread criticism of Professor MGK Menon, a physicist previously working at the
Tata Institute of Fundamental Research, whose slow decision-making process was railed against
in articles in the Economic Times and Financial Express. This period would serve as a historical 222

touchpoint for members of the indic-computing group — of bureaucratic, wrong-minded
government agencies hampering the growth of the technology sector.

The tide turned again in the Indian computer industry beginning in the 1980s, with the rise of
Rajiv Gandhi in national politics. Rajiv Gandhi was the son of then-Prime Minister Indira Gandhi,
the daughter of Jawaharalal Nehru. Rajiv Gandhi was being groomed to enter politics. Rajiv
Gandhi, an airline pilot, identified telecommunications and information technology as “core
sectors” and happened to get a new Computer Policy approved by his mother just days before her
assassination in 1984. 223

The new computer policy was designed by Narasimiah Seshagiri, the directorate of the National
Informatics Center that had been recently established under the Electronics Commission.
Seshagiri was an advocate of trade liberalization. He termed his computer policy, “flood in, 224

flood out” - that is, allow free entry of software imports, and export an even greater amount. The
policy signaled India’s openness towards international software markets, a stark contrast to the
preceding Permit Raj era.

At the same time, India’s second foreign exchange crisis in 1989 (the first was in 1981), led to
further trade liberalization. India turned to the International Monetary Fund in 1991 and was 225

forced to undergo “structural adjustment.” Structural adjustment mandated the opening of its
borders to foreign investment, amongst other conditions. Despite the economic challenges, the
new policies coming from the IMF and from internal players like Seshagiri began to show what
India stood to gain from openness towards global markets.

During this period, the Indian computer industry pivoted from hardware towards software. A 226

generation of developers became trained at the IITs and IIMs. Important software-as-a-Service
companies were founded in India: Infosys, Wipro, Satyam. Two new research and training 227

 Ibid.221

 Ibid.222

 Subramanian, 2006; Ramachandra Guha, “Rulers and Riches” in India After Gandhi: The History of the World’s Largest Democracy, 223

Reprint edition (New York/N.Y: Ecco, 2008).

 Ibid.224

 Ibid.225

 Ibid.226

 Ibid.227

71

institutions, the National Center for Software Technology (NCST) and the National Institute for
Information Technology (NIIT), were founded in the 1980s. Cities like Bangalore that 228

specialized in IT began to rise in national prominence. 229

India’s internet infrastructure also narrowly escaped another “Permit Raj” situation during this
era. As in the United States, there were multiple computer networks emerging in India in the
1980s. Like the ARPANET, and later NSFNET networks, India had a network of linked
government organizations and academic institutions beginning in 1986. “ERNET” connected the
Department of Electronics, NCST, and several IITs and IISc (Indian Institute of Science). 230

ERNET initially followed both the competing TCP/IP and OSI-IP protocols, but eventually settled
on the former. Like the early internet in the United States, the infrastructure was far from the 231

masses and limited in its uses.

At the same time, there was a flurry of recreational computer networks being formed over
telephone lines. These bulletin board systems (BBS) were gaining popularity around the world,
and India was no exception. These were important pre-cursors to the hobbyist groups described
above; many of the older members recalled participating in them.

Networks such as Live Wire! BBS, BharatNet, and later FidoNet grew over telephone lines from
the late 1980s into the following decade. As an early Indian BBS founder wrote, “In a short 232

period of time, we all became the watering holes of an eclectic mix of people ranging from
computer nerds, to students, to entrepreneurs, or those with special interest and even those
looking for an online date in the comfort of anonymity!” The networks were not easy to 233

establish, due to the long wait time of acquiring a phone line (up to seven years) and the high
price of long distance phone rates, as BBSes became interconnected internationally and came to
be charged higher fees. 234

But here too, the 1991 economic liberalization reforms improved the state of affairs. The newly-
created Department of Telecommunications (DoT) was tasked with opening up
telecommunications to private sector investment. This formal opening-up came with a new Value
Added Services (VAS) registration fee however – envisioned to encourage a minimum level of
performance, but in practice, threatening to shut down BBSes because of the high cost. 235

 Ibid.228

Guha, “Rulers and Riches.”229

Rao, Madanmohan, “India’s Internet Chronicles,” in NetCh@kra: 15 Years of Internet in India. 2011.230

 Rao, Madanmohan, “India’s Internet Chronicles,” in NetCh@kra: 15 Years of Internet in India. 2011.231

 Nanda, Suchit, “From BB (Bulletin Boards) to BB (Broad Band) Internet,” in NetCh@kra: 15 Years of Internet in India. 2011.232

 Nanda, 86.233

 Ibid.234

 Ibid.235

72

Advocacy against the VAS fee by the BBS community and the US-based nonprofit, the Electronic
Frontier Foundation, led to the DoT backing down. As Nanda wrote, “This was probably the first
instance of electronic advocacy in India and that too with quite a positive result. The license raj
in Indian e-space was nipped in the bud!”. The tussle between government and hobbyists over 236

internet infrastructure left the message that users might know better than the government, and
could lobby for the right to access global networks.

Though India’s large rural and remote population often makes it the subject of focus in
discussions around the “digital divide,” it is worth remembering that there was simultaneously a
significant population that was highly, and excitedly, connected. By the late 1990s, BBS
communities were rallying to establish internet for the public. News of the World Wide Web 237

had traveled through information networks, and there was high demand for its access. At first,
the DoT authorized only one major phone company, Videsh Sanchar Nigam Limited (VSNL), to
be an international internet carrier. VSNL service launched on August 15, 1995. But due to the
expensive and limited service, two years after its introduction, there were just 40,000
subscribers, compared to 500,000 across the smaller area of Singapore, Hong Kong, Malaysia,
and Taiwan. 238

Public lobbying via the Email and Internet Service Providers Association of India (ESPAI)
continued for an open policy that would allow private players to become internet service
providers. Finally in 1997, the Telecom Regulatory Authority of India (TRAI) Act passed as a
result of this lobbying, resulting in the establishment of an independent telecom regulator. The 239

following year, private internet service providers (ISPs) became legal and internet connectivity
took off in metropolitan India. A similar ‘opening of the internet’ to commercial ISPs in 1991 in
had greatly expanded the number of users and made the Internet a fixture of everyday life the
United States. 240

Though there were still many barriers to reaching the entire population – access to computers,
internet access in rural areas, unreliable electricity – India had become connected to the
“information superhighway” not long after the same services reached the masses in the United
States. Going into the early 2000s, there was momentum towards India’s rise with respect to
information technologies. By the early 2000s, most major international software companies had
set up offices in India: SAP, Peoplesoft, Oracle, IBM, Sun, CISCO, Nortel, Adobe, and most
significantly, Microsoft. 241

 Nanda, 90.236

 Nanda, Suchit, “From BB (Bulletin Boards) to BB (Broad Band) Internet,” in NetCh@kra: 15 Years of Internet in India. 2011.237

 Chowdary, T. H. “Birth and Growth of Internet in India,”n NetCh@kra: 15 Years of Internet in India. 2011, 65.238

 Ibid.239

 “Internet History of 1990s | Internet History | Computer History Museum,” accessed June 29, 2022, https://240

www.computerhistory.org/internethistory/1990s/.

 Subramanian, 2003.241

73

https://www.computerhistory.org/internethistory/1990s/
https://www.computerhistory.org/internethistory/1990s/

Microsoft had a two-pronged vision of engagement with the Indian subcontinent. Like other
software companies, it sought to employ India’s large English-speaking and IT-proficient
workforce. But it also was one of the only companies to identify India as a large consumer
base. Towards these ends, Microsoft began investing millions into local training and software 242

localization. As it said in November 2002 article in the Indo-Asian News Service:

Contending that it was very important to localise software in India, Gates announced plans
to market "Microsoft XP" and its next version "Office 11" – code named "cash cow" -- in
Indian languages like Hindi, Bengali and Malayalam and extend it to nine more Indian
languages in 2003. Work on this is underway at Microsoft's development centre in
Hyderabad. The company plans to invest $100 million of the $400 million on the centre,
which will have 500 employees by 2005, up from the current 200. 243

Additionally, the company would spend $20 million on a program to train over 80,000 school
teachers and 3.5 million students in IT over five years. This and other initiatives required 244

partnerships with local government. The same year, Microsoft announced plans to develop 245

several products for e-governance initiatives: land record management, mail messaging systems,
policy communication applications, registration services. 246

Over the past fifty years, India had experienced isolation, limited negotiating power with the
West (as with IBM’s gradual upgrades policy and eventual withdrawal from India), and the swell
of wealth that came from slowly opening its markets to international investment. The new
millenia brought an eagerness to continue the upswing of the 1990s. At the same time, the
history of the past fifty years brought suspicion of new players, reflected in articles dubbing
Microsoft programs “cash cows”. For software hobbyists, the experiences of the 1990s also
showed that user activism had a role to play in directing national IT policy. The government had
been slow to understand the high demand for and impact of the internet; it was BBS users who
had glimpsed the future first. Now, in the early 2000s, the indic-computing group was left with a
set of complicated politics: distrust of corporations, a belief in open standards and a desire for
interconnection, and a sense of government lethargy. Someone needed to set a new agenda and
direct these parties. This is where the Indic-computing group came in. Their work would entail
bringing together open source enthusiasts and old-school academic researchers; it also meant
inviting Microsoft representatives to those same gatherings. As Parikh wrote, “We have to make
sure technically-informed decisions are made.” 247

 Constable, interview.242

 “Gates to invest $400 million in India, unveils Tablet PC” Indo-Asian News Service. November 14, 2002.243

 Ibid.244

 Naazneen Karmali, “Microsoft’s Passage to India,” Forbes, accessed June 29, 2022, https://www.forbes.com/global/245

1998/0727/0108030a.html

 “Bengali Windows version by Oct 2003” Times of India, December 16, 2002.246

 Parikh, “New Blood - Forget the Establishment,” email.247

74

https://www.forbes.com/global/1998/0727/0108030a.html
https://www.forbes.com/global/1998/0727/0108030a.html

Bangladesh’s National Computing Policy: Contrasts and Counterpoints

In contrast, Bangladesh’s information technology sector had only inched along through the 20th
century, and the ethics of the bengalinux group reflected such. As many of its members would
later reflect, they were doing their volunteer work because it felt like no one else would. 248

Where India had multiple research institutions, government agencies, a lively private sector, and
even funding to support open source projects, Bangladesh’s technology sector was scattered and
sparse.

Its computing history contrasted starkly against India’s. Bangladesh, then still East Pakistan,
received its first computer in 1964 as a gift from IBM. The Pakistani government could only 249

find one suitable operator, based in East Pakistan, which led to its installation in Dhaka’s Atomic
Energy Centre. Though mainframes grew in presence in the country over the next decade,
particularly in banks and the Bureau of Statistics, these machines had limited computing power
(with Bangladesh too falling into IBM’s gradual upgrades policy) and were quite costly. Where
India jumped ahead to mini- and micro-computers in the 1970s and 80s, Bangladesh continued
to use large mainframes. Its major private universities, the Bangladesh University of 250

Engineering and Technology (BUET) and Dhaka University only received these mainframe
computers in 1979 and 1985, respectively. Where India’s major research universities would 251

receive government resources and participate in international exchange programs (detailed
further in the following chapter), Bangladesh’s major universities lagged in even creating
computer science training programs. Hanging in the background were infamous sayings like 252

that of Henry Kissinger in 1972, that the country of Bangladesh was destined to be a “basket
case.”

Bangladesh’s computer policy straggled behind India’s in many other ways. The counterpart to
India’s Department of Electronics (started in 1970) was Bangladesh’s National Computer
Committee, which was formed in 1983 to purchase computers for government use. It was later 253

re-organized and renamed the Bangladesh Computer Council in 1990, after which time it took
on a more active role in computer education, organizational support, and infrastructure
development. India’s Department of Electronics had followed a wayward policy of indigenous 254

computing, but Bangladesh’s analog had not done much at all. Indigenous assembly – the

 Taneem Ahmed, interview; Mahay Alam Khan, interview with author, July 8, 2019.248

 Masud Hasan Chowdhury and Md Mahbub Murshed, “Computer - Banglapedia,” accessed June 29, 2022, https://249

en.banglapedia.org/index.php/Computer.

 Ibid.250

 Ibid.251

 Ibid.252

 Mahbubul Alam, “Bangladesh Computer Council - Banglapedia,” accessed June 29, 2022, https://en.banglapedia.org/index.php?253

title=Bangladesh_Computer_Council.

 Ibid.254

75

https://en.banglapedia.org/index.php?title=Bangladesh_Computer_Council
https://en.banglapedia.org/index.php?title=Bangladesh_Computer_Council
https://en.banglapedia.org/index.php/Computer
https://en.banglapedia.org/index.php/Computer

purchasing of parts for local assembly – finally became popular in the late 1990s as personal
computers gained popularity and lowered in cost. 255

Indeed, the popular belief amongst tech-savvy Bangladeshis was that their government was
letting them down, particularly with respect to internet connectivity. In a July 1996 issue of
Computer Jagat, an editorial stated,

Revolutions have been created round the world to use Internet for extension of knowledge,
scientific activities and education. But, in Bangladesh we have no such initiative to provide
Internet access to the educational institutions. Even most prestigious higher institutions like
University of Dhaka and Bangladesh University of Engineering & Technology are beyond its
reach. 256

The Bangladeshi government had rejected the offer to connect the country to the Internet via
submarine cable twice, once in 1988 and again in 1994, citing “security concerns.” India had 257

likewise rejected the first offer, but Bangladesh was a standout in 1994 when India, Pakistan, and
Sri Lanka all accepted the interconnection offer. Instead, internet in Bangladesh spread slowly 258

beginning in 1996 with a satellite connection. The fees for the satellite connection were so high
that internet use remained limited even in Dhaka until the coming of mobile internet in the
mid-2000s. 259

Those knowledgeable of and committed to the forthcoming “digital age” — perhaps from their
experience with BBS networks from the early 1990s, or from hearsay beyond Bangladesh’s
borders — would travail to evangelize it at the turn of the millennium. The Indian software 260

hobbyists were seeking to steer a carriage that was well on its way, and Bangladeshi tech
enthusiasts found themselves struggling to get onboard a coach at all.

The relative vacuum of activity in Bangladesh explains the context that many Bangladeshi
bengalinux members bore in mind. Though the group spanned across India, Bangladesh, and the
diaspora, its founder and about half of its members at any given time had ties to Bangladesh. 261

For them, the open source ethic or hacker mindset resonated even more than for perhaps the

 Chowdhury and Murshet, “Computer - Banglapedia.”255

 “Provide on-line Internet access to educational institutions immediately.” The Monthly Computer Jagat, July 1996, 19. Quoted in 256

“Overview of Internet Access in Bangladesh: Impact, Barriers, and Solutions,” https://web.archive.org/web/20160103124803/
https://www.isoc.org/inet97/proceedings/E3/E3_1.HTM

Mohammad Ershadul Karim, “History of Submarine Cable,” in Cyber Law in Bangladesh (Kluwer Law International B.V., 2020).257

 Ibid.258

 Bangladesh Network Operators Group, “History and Evolution of Bangladesh Internet,” https://www.slideshare.net/bdnog/259

history-and-evolution-of-bangladesh-internet.

 For example: Shahidul Alam, “When a Modem Costs More Than a Cow,” Bytes for All, April 30, 1999, https://shahidulnews.com/260

when-a-modem-costs-more-than-a-cow/.

 Taneem Ahmed, interview with author, August 19, 2020.261

76

https://www.slideshare.net/bdnog/history-and-evolution-of-bangladesh-internet
https://www.slideshare.net/bdnog/history-and-evolution-of-bangladesh-internet
https://web.archive.org/web/20160103124803/https://www.isoc.org/inet97/proceedings/E3/E3_1.HTM
https://web.archive.org/web/20160103124803/https://www.isoc.org/inet97/proceedings/E3/E3_1.HTM
https://shahidulnews.com/when-a-modem-costs-more-than-a-cow/
https://shahidulnews.com/when-a-modem-costs-more-than-a-cow/

average contributor — building independent tools gave them an opportunity to contribute and
fill gaps that their governments had left unfilled. Again, the ability to do this rested on their
technical expertise. Why shouldn’t Bengalis be able to type in their own language online, or have
their literature preserved for the future? If Microsoft or the government wasn’t doing it, they
could do it themselves.

“Khanda ta” & Bengalinux

It was in this context that we can begin to understand the steady interactions that would begin
between the software hobbyist groups and the Unicode Consortium, as issues began to emerge
with its Bangla encoding. As the introduction of this dissertation laid out, the issue with the
Bangla letter khanda ta would have a long life and inspire vociferous debate. The issue would
even take on a nationalist tenor and create a divide between Global North and South in the
minds of some key actors. But this was not the universal reaction, and I show that here by tracing
how issues with khanda ta were interpreted by technical-minded, software hobbyists — as a
software bug that needed fixing, simply so that Bangla text would display properly.

On November 17, 2002, a new name would pop up on the FreeBanglaFonts listserv: Andy White.
He posted, “Please see my Why the Unicode Indic FAQ is Wrong (Part 1) article,” and a link to his
personal blog. It was highlighting errors in how khanda ta was showing up in text when 262

placed next to certain vowels.

Figure 23. Snapshot of Andy White’s Blog Post

 White, Andy, “RE: [Freebangfont-devel] Bengali OT specification,” Email, November 17, 2002.262

77

I provide a layman’s interpretation of this blog post below, but first, who was Andy White?
White’s messages conveyed expertise in text encoding and rendering, as well as deep interest in
the Bangla language. He referenced Bangla manuscripts (from which he had identified that the
half-ta was a short-lived innovation from the hot-metal type era) and seemed better acquainted
with the orthography than many native speakers. As one Bengalinux member wrote in response
to White’s blog post, “I don't have such a deep knowledge of the orthography (I use bangla, I
don't study it! :))” 263

Figure 24. Banner From Andy White’s Personal Website

Beyond that, however, few knew much about him. His website was called “Exnet: The site with a
meaningless name!,” with the header written in both Bangla and Latin script and a UK top-level
domain. The preamble did not give away much, beyond his interest in the “Bengali script (due 264

to my own preferances).” The site hosted just a few pages with commentary on Unicode
encoding; he did not appear to be a font designer or software developer, at least based on the
content of the site.

In some ways, White epitomized the nature of identity on the early Web. As Emily van der Nagel
has written, the internet has moved through several major waves of identity construction, from
the usernames of the early Internet – ARPANET, UNIX, and email – to nicknames on bulletin
boards, to the later stage of real-name social network profiles. The early and middle stages, in
particular, were marked by malleability, or the absence of, “material attributes like gender, age,
ethnicity and class.” Bulletin boards were set up to emphasize interests over identities. Users 265

such as Andy White did not have to be tied to offline markers such as employer or education, as
came to be encouraged on later social networks. As the adage went, “on the internet, nobody
knows you’re a dog.” White would appear as an advocate for the Bangla language community at
several points over the coming years; despite his lack of affiliation, he would gain the attention
of Unicode overseers due to his sharp critiques, though the attention would be slow and uneven.

Andy had produced this blog post now, in November 2002, because khanda ta was not appearing
correctly in digital text. It was a “dead consonant,” meaning it carried no inherent vowel sound.

 Ghose, Kaushik. “RE: [Freebangfont-devel] Bengali OT specification,” Email, November 17, 2002.263

 “Exnet”, https://web.archive.org/web/20121012000621/http://www.exnet.btinternet.co.uk/.264

 Emily van der Nagel, “From Usernames to Profiles: The Development of Pseudonymity in Internet Communication,” Internet 265

Histories 1, no. 4 (September 2, 2017): 312–31, https://doi.org/10.1080/24701475.2017.1389548.

78

https://web.archive.org/web/20121012000621/http://www.exnet.btinternet.co.uk/
https://doi.org/10.1080/24701475.2017.1389548

It was therefore “illegal,” as he wrote in his blog post, for vowel modifiers to appear around it.
The layman’s description of his blog post was that, because of the instructions that Unicode had
provided for representing khanda ta on its online “Indic FAQ” page, illogical behaviors were
occurring.

This was a new rather than long-standing issue. The current Indic FAQ seemed to be the result of
an earlier conversation that had taken place on the main Unicode list in May 2002. An individual
named Somnath Kundu had started a new thread about khanda ta being missing from the
Unicode Standard, much like Ziaur Rahman had done in 2000. 266

As with before, he highlighted the linguistic status of the letter (“considered a distinct consonant
in Bengali script”) and technical ambiguity in its encoding (“there is a problem supporting it as a
combination of 09A4+09CD”). Kundu wasn’t saying khanda ta was necessarily missing from the
Standard, only that its representation was ambiguous.

Unlike Rahman’s post in 2000, Kundu’s received an authoritative response from a Microsoft
employee, Apurva Joshi.

Apurva Joshi was Microsoft’s then-Program Manager for Font Technologies. Her father was the
renowned Indian font designer, Professor R. K. Joshi, recognizable by name to anyone in the
design industry in India. Professor Joshi had had a long career as a calligrapher, poet, teacher,
and marketing guru in India. He had taught at the Sir J.J. Insitute of Applied Arts and later at IIT
Bombay, training a whole generation of students in Indian typography. He was also one of the 267

 Kundu, Somnath, “Bengali script - where is “khanda ta”?” Email, May 18, 2002.266

 Olocco, 68; Shrinath Shanbhag, interview with author, March 28, 2022.267

79

first non-Latin typographers to present regularly at the Association Typographical Internationale
(ATyPi) annual conferences, which expanded his name recognition outside of India. 268

In 1997, Professor Joshi had joined the Indian government’s language technology initiative, the
National Center for Software Technology (NCST) and was soon contacted in this post by
Microsoft’s Typography department to design their first set of Indian language fonts. Between 269

1997 and 2004, Joshi and his team developed the Mangal, Latha, Gautami, Raavi, Shruti, Tunga,
and Kartika fonts for Devanagari, Tamil, Telugu, Gurmukhi, Gujarati, Kannada, and Malayalam
respectively. He also worked on the Vrinda font for Bangla, which was eventually released in
2004 with Windows XP Service Pack 2. 270

While her father worked on Indic fonts, Apurva Joshi was leading Microsoft’s rendering efforts.
The program manager role at Microsoft encompassed equal parts relationship-building and
technical direction. She was in touch with the folks leading the indic-computing effort, and
headlined workshops co-organized by the hobbyist group and NCST to answer questions about
Indic rendering. 271

It was from this position of authority that she drafted a response to Somnath Kundu’s question
regarding khanda ta. Apurva Joshi responded that, though she was not an expert in the Bangla
script, her understanding was that its structure could be analogized to Devanagari. Where 272

Devanagari had “half-forms”, Bangla had “halant-forms” – cases where the inherent vowel is
silenced – that would be represented in the same way.

Apurva Joshi’s instructions were to treat Bangla halant-forms the same way as half-forms in
Devanagari, since Bangla had no half-forms of its own. At the request of Rick McGowan,
Unicode’s Vice President, she wrote up an answer for the online FAQ about how to show the
various forms, since so many questions had been asked about it. 273

Q. I don't see the Khanda Ta encoded in the Bengali block? It has a
distinct shape.

Ans. Bengali does not have distinct half forms for consonants like
Devanagari and Gujarati do. Hence for all practical purposes, the halant
forms are also considered as half forms. Conjuncts that are used by the

 Shanbhah, interview.268

Olocco, 68; Shanbhag, interview.269

 Olocco, 70.270

 Shroff, Keyur, “[Indic-computing-users] Open discussion and Q&A session on OpenType font,” Email, October 14, 2002.271

 Joshi, Apurva, “RE: Bengali script - where is “khanda ta”?” Email, May 19, 2002.272

 Joshi, Apurva, “RE: RE: Bengali script - where is “khanda ta”?” Email, May 21, 2002.273

80

Bengali language typically have ligatures to display them as. It is only
in the case of words that are not native to Bengali and require the
display of conjuncts that don't have ligatures; that these halant forms
are used. The khanda Ta is not a consonant (or distinct character) by
itself, but the halant form of a consonant. It is a special case
graphically because it is not displayed as Ta Halant (as other
consonants in Bengali), but has a distinct shape. Such alternate forms
can be displayed using an OpenType font, that contains glyphs for such
forms. Below are sample sequences to display the conjunct created using
Ta Halant Ta in different ways. They assume that the font contains a
glyph for: (i) the Khanda Ta, as well as (ii). a glyph for the ligature
of this conjunct.

1. Ta Halant Ta -> Ligature for taTa
2. Ta Halant ZWJ Ta -> KhandaTa Ta
3. Ta Halant ZWNJ Ta -> Ta Halant Ta

As the previous chapter described, consonants could combine in multiple ways in all Indic scripts.
Somewhere in the multilingual computing stack, a standard or piece of software needed to
define which glyphs should be shown for a given combination of conjuncts. In Apurva Joshi’s
FAQ response, she offered three recipes, or Unicode codepoint sequences, that would trigger
three different ways of producing khanda ta next to another consonant.

—

Jumping ahead to November 2002, Andy White was now raising the issue of khanda ta again
because Apurva Joshi’s clarification had led to more, rather than fewer, problems. The problem
now was that in Microsoft’s shaping engine, Joshi’s instructions lead to misplaced vowel signs

81

appearing around khanda ta. White was making a larger point; this misplaced vowel issue was
symptomatic of mistakes in how Unicode was understanding the Bangla alphabet. 274

He asserted that the three cases that Joshi covered in her FAQ response did not make sense – at
least the third one of a ta with a visible halant (ত্)

To make it clear, I am not referring to any particular rendering mechanism (inc. MS's).If you
look through a Bengali Dictionary I doubt that you will find a single occurrence of Ta with a
visible Virama, khandata is always used. 275

The third option she had shown did not appear in text, and so that codepoint sequence should be
the one used to display khanda ta. Making this change would fix the problems at the rendering
level, in which vowel modifiers were appearing where they shouldn’t.

Moreover, though half-forms did not exist in Bangla as they did in Devanagari, there were such
things as half-glyphs. For half a century, “half-ta’s” did exist in the Bangla alphabet, but more a
result of a “printer’s hack” than a change in the orthography. Since metal linecasters did not 276

have room for most Bangla ligatures, consonants instead had their own miniature forms that
would be combined for conjuncts.

There were reasons to keep these half-glyphs now. Some people preferred them, and they could
also be used to digitize old metal-typed manuscripts with fidelity. A half-ta might also be needed
in a textbook to illustrate how certain conjuncts were composed. 277

And so, White wrote that the second sequence Joshi had defined should be used to display half-
tas.

Yes a consonant+Virama+ZWJ shows a half form but what makes you think that a half Ta
should look like a KhandaTa? Why should the Bengali script not be allowed to have a Half
Ta? In some fonts the Bengali half Ta is drawn as a smaller raised Ta whilst khandaTa is
given as a separate glyph. 278

In sum, Andy’s proposal was essentially saying: there are many visual representations of
consonants we need to be able to account for in a font. Opting to show these should not trigger
misplaced vowel modifiers. These mistakes were occurring in part because the rendering engine
was not agnostic to linguistic structure – it interpreted control characters as representing a

 White, Andy, “RE: Extending the semantics of ZWJ and ZWNJ for Indic scripts,” Email, November 18, 2002.274

 White, Andy, “RE: Errors in the Indic FAQ” Email, November 17, 2002.275

 Olocco, 2014; White, Andy, “RE: [Freebangfont-devel] Proposal to add Bengali Khanda Ta” Email, December 4, 2002.276

 White, Andy, “RE: [Freebangfont-devel] Proposal to add Bengali Khanda Ta” Email, December 4, 2002.277

 White, Andy, “RE: Errors in the Indic FAQ” Email, November 18, 2002.278

82

common grammar across Indic scripts. A “virama + zwj” typically represented a half-form, so
that sequence should align with half-glyphs in Bangla. A “virama + zwnj” represented halant-
forms, and that was what should be used for khanda ta, which was the halant-form of ta.

It was Apurva Joshi’s conflation between halants and half forms between Bangla and Devanagari
was causing problems.

When Andy posted to the freebangfonts page, others chimed in saying they had informally been
using Andy’s advised sequence of codepoints anyways.

I have used Andy's proposal in all my fonts (Mukti Ani etc exept Mitra which is as yet grossly
incomplete). The reason being it made more sense than the official Unicode proposition and
possible to type using ITRANS keyboard of Yudit [using t.h]. 279

This response is significant because it shows the relative independence with which the hobbyists
were working. Their goal was to create working, Bangla language software; if it only worked in
Linux, that was fine because at least it worked.

But of course, a more global solution, whether handled by Microsoft or by Unicode, would
eventually be necessary for cross-platform reliability.

Andy’s proposal didn’t gather much steam at this point. The Bengalinux members agreed with
him but otherwise let the thread die in the freebanglafonts list. Andy posted to the Unicode page
and didn’t get any official response. In January of the following year, an employee at India’s
NCST, Keyur Shroff, seemed to have noticed Andy’s argument and picked up the cause. When
Andy called him out for apparently claiming credit, Shroff responded that “I tried to put it in
other words because few people couldn’t understand what Andy meant :)” 280

These points are important because they show the steady transformation of how the “missing
letter” becomes an issue. When it first arose in 2000, it was a matter of confusion. Unicode was
new, there was dissonance between what counted as a letter and what deserved its own
codepoint. By 2002, there was work advancing in OpenType, with the Bangla specific
specification being released just as Andy’s blog post went up. But there was still a strong need to
coordinate between groups such as font designers, renderers, and the Unicode Standard.
Protocols were not in place yet to facilitate these conversations. The discussions were informal,
evident in the sources used throughout this chapter: mailing list threads, personal blogs that are
no longer live, and technical specs that had not yet been finalized.

The technology was young, but so were the institutions. Unicode staffers were not engaging
much on the mailing list, at least with respect to Indic scripts. Changes were made ad hoc to a

 Mitra, Anirban, “Re: [Freebangfont-devel] Khanda tha etc.” Email, November 18, 2002.279

 Shroff, Keyur, “RE: [Indic-computing-standards] Re: [Indic-computing-users] Unicode” Email, January 23, 2003. The rest of this 280

conversation, including Shroff’s post to Unicode, is lost because it was posted on Yahoogroups, which was deleted before being
archived

83

web page hosted on the Unicode site that contained the “Indic FAQ.” Unless someone was
scanning the Wayback Machine, these changes were not well documented nor were they
promoted. As Andy White asked in a follow up email to the main Unicode listserv,

Is the Unicode FAQ officially part of the Unicode standard? If not why not?...this should be
dealt with in detail in the next edition of the [The Unicode Standard]. IMHO, this [khanda
ta’s encoding] is not a typographical detail that can be left to implementers to settle: it affects
the interpretation of text. 281

To this, he received no response. Indeed the status of khanda ta was handled only by this
informal FAQ page, which contains a smattering of questions related to how Unicode compares
to ISCII and why Unicode names were given as they were. 282

A related point is where the expertise was coming from in this conversation. Khanda ta did not
emerge as an issue among the Bangla computing hobbyists, who either had not encountered the
problem or had developed their own open source work around. Khanda ta was championed at
this point by Andy White. Furthermore, the referenced “mistake” seemed to come from an Indian
native, Apurva Joshi, whose decision to conflate Devanagari and Bangla introduced the bug.
These facts add complications to a narrative that later assumes it is the fault of Westerners,
disadvantaging the Bengalis.

These points are worth remembering as the narrative transforms in the coming chapters. The
next chapter explores how such orthographic-like debates are handled between official
representatives of the institutions themselves: Unicode Standard designers and Indian
government representatives. Thus far, we’ve used the lens of technical design to talk about the
shortcomings of the Standard and its downstream technologies for Indic scripts. Beginning in
Chapter 3, we will consider how these technologies fit into a longer perceived narrative of
language politics and planning: who holds the authority to determine how a script will be
represented? What stakes does a script, and its digitization, hold for the identity of a nation?

 White, Andy, “ISO 464, Unicode & The FAQ” Email, November 21, 2002.281

 “FAQ - Indic Scripts and Languages,” accessed June 29, 2022, http://www.unicode.org/faq/indic.html.282

84

http://www.unicode.org/faq/indic.html

Chapter 3: Digitizing Language Planning

The Unicode Consortium first heard of Dr. Om Vikas and his government-sponsored program of
Technology Development for Indian Languages (TDIL) in the year 2000, when Vikas sent them
an unsolicited copy of his program’s new newsletter. Intriguingly entitled “Language Technology
Flash: Moving up the knowledge chain…,” it set forth his nationalist agenda for Indian computing
in bold, unapologetic terms:

India is the second largest population in the world with one billion populations. There are
18 constitutional languages with 10 scripts and over 1650 dialects. Development of the
nation with such diversity depends on acquiring absorbing and communicating knowledge
seamlessly. Information Technology (IT) has emerged as an enabling technology in
reducing the knowledge gap across different linguistic groups encompassing over 95% of
India’s population that is not English-literate. It is, therefore, necessary that people should
be able to use languages and derive benefits of enhanced productivity and better quality of
life. National excellence in the millennium shall be determined by the extent to which the
Information Technology can deliver its potential in Local Languages. 283

For Vikas and his team, in other words, multilingual computing was not just a nicety, but a
matter of “national excellence,” an essential prerequisite to the “development of the nation.” As
Vikas pointed out, India was both an enormous and an enormously diverse state — presenting a
multilingual challenge on a scale almost unimaginable to the West. What Vikas didn’t highlight,
but nevertheless knew quite well, was that India was also poor — and he wanted to remedy that
using information technology. The personal computer and the internet presented an incredible
opportunity to improve India’s living conditions, but only if the Indian masses were able to use
them. And therein lay Vikas’s problem: how to make information technologies available to all,
not just the “English-literate” few? Over the next few years, Vikas and his team would not only
become leading figures in India in the field of local-language computing, but would also succeed
in building meaningful relationships with their counterparts abroad. Unlike the hobbyist listservs,
Vikas had access to the international power players responsible for defining multilingual
computing standards, including of course, the Unicode Consortium.

In this chapter, I lay out the emerging language politics of Vikas’s new digital age, defined by an
unprecedented access to international cooperation as well as an unapologetic pursuit of national
greatness. I argue that Vikas’ agenda is best understood through the sociolinguistic lens of
“language planning,” the state-sponsored activity of “manipulating language as a social resource
in order to reach objectives.” Historians understand language planning to be a post-war, 284

postcolonial practice, closely intertwined with theories of modernization and development.
Those responsible for language planning included government agencies, educational institutions,
and linguistic authorities. As these forces worked to exploit “language as a social resource,” 285

 Vikas, Om. Language Technology Flash. Unicode Technical Committee Document Registry. L2/00-407.283

 Carol M. Eastman, Language Planning, an Introduction (Chandler & Sharp, 1983), 29.284

 Ibid.285

85

they often conducted orthographic reform meant to refine and standardize writing systems, using
state media and educational curricula.

At the same time, we see the contrasting approach of the Bangladeshi government. Where Vikas’
engagement with the Unicode Consortium represents a recognition of new authority,
Bangladesh’s engagement with the International Organization for Standards (ISO) on the same
issues represents a stagnant view and reliance on past authorities. Bangladesh’s understanding of
Unicode would evolve over the coming years through India’s example and through its experience
of khanda ta as the issue would begin to take off.

This chapter begins with a historical account of the activities of the TDIL program under Dr. Om
Vikas, including the group’s philosophies of language development. It then situates TDIL within
the longer history of language politics in South Asia, arguing that TDIL represents the
culmination of a crucial shift towards national modernization in the second half of the 20th
century. Finally, it chronicles TDIL’s interactions with the international Unicode Consortium to
illustrate how it viewed script digitization policies as an extension of language planning. I bring
in the Bangladeshi government at this point as a contrasting view.

In the end, I do not make a claim in this chapter about whether Unicode encodings are genuinely
examples of language standardization or orthographic reform. As one of Unicode’s most common
refrains went, “We’re creating a technical standard, not a language standard.” But I do argue that
Unicode was understood as falling under the purview of language planning. Whereas a language
standard dictates rules for spelling, vocabulary, and grammar, typically towards the goal of
delineating its high status, language planning refers to the political activity of advancing a
language in pursuit of social and political goals. Of course, language planning can include 286

language standardization efforts, but it can also involve modifying technical resources to better
suit the needs of the language as it stands. For example, a 2000 whitepaper outlining “Fifty Years
of Hindi Language Planning” described a wide variety of technical interventions meant to
advance the development of the Hindi language, including “typewriters, stenographers, typists,
machines for writing addresses, bilingual electronic machines, software with Hindi in Devanagari
fonts and Unicode encoding, [all] made available in Hindi even before such resources are made
available in any other language.” 287

For India’s Hindi language planners, then, technological development was at least as important
as any of their other major goals (e.g., defining the geographic borders of Hindi-speaking states,
addressing public transport signs in Hindi, issuing Hindi license plates, and, yes, language-
standardization efforts such as creating a simplified Hindi and publishing a standardized glossary
for it). In other words, language technologies were absolutely central to language planning
efforts – especially when it came to local language typewriters and (more importantly for our
purposes) local-language fonts.

 “Language Standardization,” obo, accessed June 28, 2022, https://www.oxfordbibliographies.com/view/document/286

obo-9780199772810/obo-9780199772810-0250.xml.

 Prof B. Mallikarjun, “FIFTY YEARS OF LANGUAGE PLANNING FOR MODERN HINDI The Official Language of India,” January 1, 287

2000, 13.

86

https://www.oxfordbibliographies.com/view/document/obo-9780199772810/obo-9780199772810-0250.xml
https://www.oxfordbibliographies.com/view/document/obo-9780199772810/obo-9780199772810-0250.xml

This background helps us understand how the issue of khanda ta would come to take on such
high stakes in the views of government officials and laypeople, as it would be viewed through the
lens of language planning. The background provided in this chapter also helps us understand
how we would come to see the puzzling assortment of dues-paying, voting members on the
Unicode Technical Committee (an oversight board whose decisions hardly ever came to a vote).
From 2000 onward, the point at which Dr. Om Vikas would set a new agenda for TDIL, Unicode
membership would include major global software companies, one academic institution, and a
handful of South Asian governments. 288

Figure 25. Snapshot of Unicode Membership (Pre-2019 Changes to Fee Structure)

What is crucial to understand about Vikas is that his TDIL program represents a significant shift
in certain ways from the post-war language planning paradigm. Though the modernization of the
nation remained an important goal, the means by which such modernization was to occur had
changed. Specialized technical actors — including state-sponsored engineers and scientists-
turned-policy-makers — had come to replace politicians and professors in the nation’s language-
planning projects. Their expertise in the intersection of language and technology helped ensure
that their sphere of influence was no longer restricted within India’s national borders, but also
extended outward to the organizations overseeing international language standards. This
evolution, I argue, showcases how national resource planning – including language resource

 This was the University of California, Berkeley, which would join the Consortium to aid in minority script digitization. I explain the 288

role of UC Berkeley further in the Conclusion of this dissertation.

87

planning – has become increasingly corporatized in the new millennium, especially in the global
South. In a world organized around the needs of multinational corporations, national
governments may come to feel they can no longer dictate the course of language planning, but
must instead negotiate with powerful corporate actors, such as the private companies directing
the Unicode Standard.

The Roots of a New Language Technology Policy

Before we can appreciate how Dr. Om Vikas’s program would transform the landscape of indic-
language computing, we have to take a closer look at its origins. I begin here in the research
institutions set up by India’s first prime minister, Jawaharlal Nehru, where work in language
technology, and language technology standards, began.

We start at the Indian Institute of Technology, Kanpur (IIT Kanpur, or IITK) where Vikas received
his technical training. There, he met two figures who would shape his research, and later 289

policy, directions, and help produce key technical standards such as ISCII. IITK began work in
this area in 1970, when an IITK professor, H. N. Mahabala, completed a visiting scholar position
at the Massachusetts Institute of Technology (MIT). There, Mahabala had been impressed by 290

the development of an Optical Character Recognition (OCR) project for the blind. MIT’s OCR
project became an early prototype for modern-day screen readers, which are accessibility devices
that interpret the text on a screen and read it aloud for those who cannot see. When Mahabala
returned home in 1970,and relayed what he had seen, the concept intrigued one of the graduate
students at IITK – R. M. K. Sinha – who soon decided that he wanted to develop a similar OCR
system for the Devanagari script (used to write Sanskrit, Prākrit, Hindi, Marathi, and Nepali
languages). 291

As Sinha later wrote in his memoir,

Some of my colleagues expressed ridicule as well as surprise that I should choose to work
on Indian languages at a time when it was almost inconceivable that Indian languages
could be used on expensive computer systems, which remained within reach of only a few
in India. 292

As this chapter later discusses, amongst well-educated Indians, native languages were relatively
low status, in comparison to the English, the global tongue. Sinha’s comment reflected the

 “Om Vikas - Biography” Indira Gandhi Centre for the Arts. http://ignca.gov.in/PDF_data/Dr_om_vikas_faculty.pdf289

 R. Mahesh K. Sinha, “A Journey from Indian Scripts Processing to Indian Language Processing,” IEEE Annals of the History of 290

Computing 31, no. 1 (January 2009): 8–31, https://doi.org/10.1109/MAHC.2009.1, 15.

 Ibid.291

 Ibid.292

88

http://ignca.gov.in/PDF_data/Dr_om_vikas_faculty.pdf
https://doi.org/10.1109/MAHC.2009.1

dissonance many felt between using a high-status technology — “expensive computer systems”
— for a low-status purpose. Whom would that serve?

Sinha remained convinced, however, that “the benefits of computing technology could truly
reach people only through their own language, and therefore we Indians had to make a
beginning in this direction.” 293

“Make a beginning” was exactly right. When Sinha was beginning his graduate work, IITK had
only recently upgraded its computing infrastructure from the IBM 1620, which it had received
through the Kanpur Indo-American program (KIAP) all the way back in 1963. KIAP was founded
in 1962 as a cold war assistance program to allow the newly-established IITK to benefit from the
resources of nine prominent American research universities. At the time, India was an 294

important Cold War ally for the United States (in contrast to the Soviet-leaning Pakistan), and in
the interests of consolidating this allegiance, the US Agency for International Development
(USAID) provided IITK with equipment, materials, and books not otherwise available in India.
The program also provided funding for American faculty members to take up visiting positions at
IITK, as well as opportunities for IITK faculty members to do the same at American member
institutions such as MIT, which was how Mahabala had done his exchange in 1970. In total, KIAP
ran for ten years (from 1962-72), at which point IITK was deemed self-sustaining and successful
as an institute of higher education in the model of America’s premiere technological institutions.
As a representative later characterized the program, “The Kanpur Indo-American Program is
considered by many to be one of the most significant success stories in the rich history of
bilateral higher education exchange programs between the United States and India.” In many 295

ways this was true, as it set into motion exchanges between key technical actors in the two
countries that would persist into the new millennium.

Thus, in 1970, Sinha began his research on script “mechanization,” or translating the script to
screens — the first step towards building a Devanagari OCR system. The first step was to analyze
the underlying logic of Indic scripts. The eventual approach of tackling the full set of major
scripts was not decided a priori. Only after discussing the possibility of a Devanagari OCR system
with a Telugu-speaking colleague would he come to appreciate the similarities between India’s
seemingly disparate Northern and Southern scripts, since he and his colleague “[came] as [they]
did from those two different areas.” 296

What were the linguistic similarities they noted? For starters, all Indic scripts — North and South
— made the same distinction between full and pure consonants (namely, full consonants carry an
inherent vowel sound (e.g., ka), whereas pure consonants have no such vowel sounds associated

 Ibid.293

 “U.S.-India Partnership: Kanpur Indo-American Program and Beyond,” U.S. Department of State, accessed June 28, 2022, //294

2009-2017.state.gov/p/sca/rls/rmks/2010/144465.htm.

 “U.S.-India Partnership: Kanpur Indo-American Program and Beyond,” U.S. Department of State, accessed June 28, 2022, //295

2009-2017.state.gov/p/sca/rls/rmks/2010/144465.htm.

 Sinha, 15.296

89

https://doi.org///2009-2017.state.gov/p/sca/rls/rmks/2010/144465.htm
https://doi.org///2009-2017.state.gov/p/sca/rls/rmks/2010/144465.htm
https://doi.org///2009-2017.state.gov/p/sca/rls/rmks/2010/144465.htm
https://doi.org///2009-2017.state.gov/p/sca/rls/rmks/2010/144465.htm

with them (e.g., k)). All Indic scripts also contained both vowels and vowel modifiers, and their
alphabets followed a similar classification scheme and sorting order based on how their letters
were articulated.

Though India’s various scripts “differed in [terms of their] number of consonants and number of
vowels, [with] some providing finer-grained articulation and some remaining at a coarser level,”
they could generally be modeled after one another. Thanks to this realization, Sinha and his
colleagues were able to define a superset of all Indic script symbols, which they called the
“enhanced Devanagari script.” This “enhanced” Devanagari would eventually form the basis 297

of ISCII, the official character encoding standard of India, which would itself be folded into
Unicode in 1991 (as discussed in Chapter 1).

Sinha’s decision to base this supposedly universal script system on Devanagari, however, did not
come without its costs. For many users, it would prove impossible to disentangle ISCII’s reliance
on Devanagari from the legacy of Hindi-language supremacy in India over the second half of the
20th century (as discussed later in this chapter). Of course, one can also paint a far more
innocent picture of ISCII’s development. It is possible that Devanagari was chosen as ISCII’s
“base” script simply because it was India’s most widely used script. It is also possible that
Devanagari was chosen simply because it was the primary language of the project’s lead
investigator, Dr. Sinha. For our purposes, however, it is telling that Sinha’s move to elevate
Devanagari in this way was near incidental. ISCII was the brainchild of a handful of scientists,
who only stumbled into the role of developers because they were interested in similarities
between scripts that were primarily clinical and scientific in nature.

Om Vikas, the policy maker whose TDIL program would help bring these kinds of language
planning issues to the attention of the Unicode Consortium, did not directly participate in Dr.
Sinha’s research efforts to digitize the Devanagari script. However, when Vikas was completing
his PhD at IITK, Sinha was also there as a professor, and was in fact in the middle of launching
his language technology research lab, meaning that Vikas was well aware of such efforts. 298

After Vikas graduated in 1977, he worked briefly as a Systems Engineer at Tata Consultancy
Services before moving into a role in the National Informatics Center (NIC) within the
Department of Electronics. This was where he met Professor MGK Menon, who had been with
the Department of Electronics since the Permit Raj era of computing mentioned in the previous
chapter. It was Menon who encouraged Vikas to pursue work in “Informatics for Indian
Languages,” a nascent policy area at that time as well. 299

The idea took hold in Vikas. By 1978, Vikas was already organizing a national symposium on the
“Linguistic Implications of Computer Based Information Systems.” Even Dr. Sinha, one of the
most prominent and senior researchers in the field, had to color himself impressed:“This

 Sinha, 17.297

 Sinha, 16.298

 Om Vikas, “Language Technology Development in India,” 2001, 18.299

90

symposium, a landmark in the history of Indian language computing, triggered numerous related
research projects in India.” 300

One of the major projects “triggered” by the symposium was the creation of a new language
standardization committee, sponsored by the Department of Electronics, which would be
responsible for designing a character standard for Indic scripts along the lines of the American
ASCII standard. As previously mentioned, this committee relied on the “enhanced” Devanagari
script developed by Sinha’s language lab to come up its first version of an official multi-script
standard – which began in 1982 with a 7-bit code known as ISSCII-7 (Indian Scripts Standard
Code for Information Interchange), and subsequently developed into an 8-bit code called
ISSCII-8 the following year. 301

ISSCII-8 represented an important leap forward because it complied with ISO’s 8-bit code
recommendations, which suggested all script standards — even those developed for non-Latin
scripts — retain ASCII’s Latin and control characters as their 128 initial codepoints. However,
some members of the committee remained unsatisfied, and the 8-bit ISSCII-8 standard continued
undergoing revisions. Finally, after further development, the standard was passed along (now
renamed ISCII instead of ISSCII, dropping the second ’S’ for Standard) to the Department of
Electronics, which published the first official version in 1988. 302

Another, equally important outgrowth of Vikas’s linguistics symposium was a major grant to
continue Sinha’s work on local language computing at IITK, also funded by the Department of
Electronics. During the same years that the standardization committee was developing what
would become ISCII, between 1983 and 1988, IITK researchers were simultaneously working on
a project that would become known as the Integrated Devanagari Terminal, which would finally
allow Devanagari to be used on any UNIX computer. The Integrated Devanagari Terminal was 303

later expanded into the GIST (Graphics and Indian Script Terminal) card, which could support all
major Indian scripts. GIST was important as being the only example of ISCII in practical use —
serving as a touchstone for its proponents to say it was possible when it would fail to gain
widespread adoption.

These twin developments — ISCII and the Integrated Devanagari Terminal — made it possible
for the first time to view, enter, and process data in Indian languages. It was still just a
preliminary model though. Efforts to refine and commercialize this technology were quickly
taken up by the Center for Development of Advanced Computing at the Department for
Information Technology — one of the government organizations that would be in the eye of the
Indic-computing hobbyists as wrong-mindedly devoting resources to closed technologies.

 Sinha, 16.300

 Sinha, 20.301

 Sinha, 22.302

 Sinha, 23-24.303

91

Figure 26. Alignment of Indic Scripts in ISCII (Bureau of Indian Standards, 1991)

92

Returning to Vikas, he would found the Technology Development for Indian Languages (TDIL) in
1991 under the aegis of India’s Ministry of Information Technology where he took his next post.
When it began, the program was focused exclusively on technology development, especially
natural language processing. In this sense, it was a natural outgrowth of the research activities
that had already been taking place within Indian universities over the course of the previous
decades, particularly at the Indian Institute of Technology in Kanpur (IIT Kanpur, or IITK).

As the new millenium approached, however, Vikas’s vision for TDIL began to evolve, and he
orchestrated several moves to reflect this broadening vision. Whereas he had previously focused
on supporting the government’s national efforts at technology development, he now shifted his
attention to trying to increase international engagement with companies that had shown
themselves to be interested in targeting Indian consumers, such as Microsoft. Even more
remarkably for our purposes, he began to situate the technology localization efforts of TDIL
within a broader program of Indian development and modernization, quite apart from
preexisting government initiatives.

Language Technology Development in India: Launching a New Era of International Cooperation

In a keynote speech he gave in October 2001 at the “Language Technology Business Meet” — a
workshop designed to facilitate conversation between Indian policy makers, technologists, and
researchers that included panel discussions such as “India as global player in Language
technology” — Vikas laid out a remarkable four-part theory of techno-social transformation that
drew important connections between local language technologies and human flourishing. It was
later published as a whitepaper, “Language Technology Development in India.” What was 304

remarkable about this piece was not only its resonance with modernization theory – i.e., the idea
that there is a ladder of development that countries can “climb” step by step to become more
prosperous, if only guided by the right economic policies – but also its efforts at “localizing” said
modernization theory for the Indian subcontinent.

Vikas’s keynote address began with a historical account of information technology, starting with
the recognition that the past half-century had brought about a massive “paradigm shift from data
to information to knowledge processing.” In other words, whereas computer science in the 305

1960s and 70s had largely been limited to processing numeric “data” alone, perhaps referring to
statistical analyses of databases, in the 1980s and 90s, computers had become capable of
processing “information” as well, such as building natural language processing models. Now,
thanks to the computing advances of the 90s, Vikas claimed, “another paradigm shift from
Information to Knowledge is taking place.” By this, he was referring to the emerging field 306

of“knowledge engineering,” which, as he explained, was “an important discipline especially in

 Om Vikas, “Language Technology Development in India,” 2001.304

 Vikas, “Language Technology Development in India,” 6.305

 Ibid. 306

93

the wake of convergence of computing, communication and content technologies.” Altogether, 307

according to Vikas, humanity was in the midst of its fourth major information revolution, the first
being the invention of writing systems, followed by the invention of the written book, followed
by the invention of the printing press, and culminating now with the invention of the computer,
which made it possible to communicate in new and unprecedented ways. Because the computing
revolution had been concentrated in the West, however, “English [had become the] lingua franca
of Science and Technology,” which meant that entire swaths of the globe were getting left out of
the conversation. For Vikas, this deficiency also presented important opportunities for 308

researchers to extend computing benefits to more of the population. After all, as he argued, over
the course of the twentieth century, the time it took for new technologies to reach the masses had
become shorter and shorter. After Edison’s invention of the lightbulb, it took decades for
electrical lighting to be installed in residential homes. Even compared to the radio or the
television, the personal computer had reached the average consumer with remarkable speed. 309

Now all that remained was to ensure that all consumers around the globe had equal access. (For
a researcher who spent most of his academic career in electrical engineering, Vikas appears to
have devoted an astonishing amount of effort to the study of history to craft such a prehistory of
his own technological efforts.)

Figure 27. Om Vikas at TDIL Meet 2001 (Language Technology Flash, May 2001)

 Ibid.307

 Ibid.308

 Vikas, 7.309

94

In addition to researching the history of information technology, Vikas also had also clearly
devoted himself to the study of economics. The second component of his keynote concerned the
economics of information exchange, beginning with the premise that “Knowledge defies the
economic principle of scarcity.” In contrast to traditional goods and resources, Vikas argued,
knowledge did not run out when more people tried to make use of it; on the contrary, in the case
of knowledge, “the more you use it and pass it on the more it proliferates.” 310

On the basis of this presupposition, Vikas offered an equation for modeling the relationship
between Technology (T), Economic Development (E) and Knowledge creation capacities (K), by
which he meant its cultural resources — akin to a model one might learn in an introductory
macro-economics class. In his conception, Technology (T) promised to boost Economic
Development (E), but was just as likely to decrease overall Knowledge (K) as to increase it. In
what cases might technology make cultural resources dwindle rather than flourish? Under
circumstances in which technology had been dispersed unevenly across populations, leaving
behind entire languages, literatures, and fields of expertise. In this new digital age of knowledge
engineering, Vikas argued, knowledge would only be able defy the economic principle of scarcity
if the appropriate technology was developed, capable of transforming “‘digital divide’ into ‘digital
unite.’” 311

It’s worth noting that Vikas’s use of the term “appropriate technology” dates back to an
influential 1973 essay by economist E. F. Schumacher, entitled “Small is Beautiful.” 312

Schumacher’s original concept, “intermediate technology,” referred to tools that were simple
enough for on-the-spot maintenance and repair – such as a hand-powered water pump, or a self-
contained solar lamp. These tools needed to be cheap enough for anyone to afford, and
accessible enough for anyone to use. Schumacher envisioned intermediate technologies as
“helping people in the non-modern sector,” by which he had something very specific in mind.
According to Schumacher, the point of these intermediate technologies was not just their
economic utility (e.g., filling infrastructure gaps in resource-poor areas where wealth was
limited), but also their simplicity, which Schumacher envisioned as a protest against
modernization writ large, which had made people “alienated from nature,” deceived by the
“illusion of unlimited power, nourished by astonishing scientific and technological
achievements.” Intermediate technology was about a “more affective [e.g., emotionally astute] 313

notion of production,” which is to say, technology “with a human face.” Inspired by the Buddhist
tradition and the teachings of Mahatma Gandhi, which decried “machines that concentrate
power in a few hands and turn the masses into mere machine minders,” Schumacher had even 314

 Ibid.310

 Vikas, 3.311

 E. F. Schumacher, Small Is Beautiful: Economics as If People Mattered, Reprint edition (New York, N.Y: Harper Perennial, 2010).312

 Schumacher, 5.313

 Schumacher, 20.314

95

published a work entitled Buddhist Economics, which combined questions of economic
development with spiritual values like simplicity and egalitarianism. 315

This context is striking in that the movement for appropriate technologies has deep roots in
South Asian traditions and values, but was disregarded by Vikas, who reworked the concepts in
service of his own vision of Indian development and ascension. These were outlined in the third
component of his keynote: the “ABC Technology Development Phases.” According to Vikas, 316

because “India [had always been] aware of the technological changes and the local constraints”
of its circumstances, its original technology strategy had been to focus primarily on “Adaptation,”
during the “A-Technology” phase from 1976-1990. Adaptation techniques included “abstraction
of requisite technological designs and competence building in R&D institutions.” This period, we
can safely assume, included the development of the ISCII standard and GIST modules at major
Indian research institutions. The next “Basic,” or “B-Technology,” phase lasted from 1991-2000,
and was focused on ramping up language technology initiatives, including government-
sponsored industry efforts (e.g. Indic-language word processors developed by Modular Infotech,
the most prominent producer of proprietary language technologies in India).
According to Vikas, “Basic Technologies” included “generic information processing tools,
interface technologies and cross-compatibility conversion utilities.” Also, he added proudly,
during this period, his own “TDIL program was initiated.” Finally, the “Creative,” or “C-
Technology” phase, would mark the years from 2001-2010 defined by “developing Creative
Technologies in the context of convergence of computing, communication and content
technologies. Collaborative technology development is being encouraged to realise.” 317

More than ever before, this new era seemed to signify a greater desire to connect with
international standards and multinational corporations, once considered to be agnostic or even
hostile to Indian interests, but now seen as India’s most promising path forward. It’s worth
noting that Vikas’s “ABC Technology” periodization did not precisely map onto the historical
account of broader information technology that he had begun his talk with. This is because
Vikas’s historical account concerned global stages of computing development, whereas his ABC
phases referred to India’s own language technology efforts – which were lagging slightly behind
those of the rest of the world, but remained responsive to new computing developments.

By the early aughts, the TDIL program had become lauded around the world. By this point, it
seemed, TDIL and the Ministry had begun sending copies of the newsletter to all potential
stakeholders they could identify, Western and Indian. Its quarterly newsletter, renamed Vishwa
Bharat, or “India Together,” began its July 2002 issue with appreciative comments from
international readers. One professor from the Indian Institute of Science wrote in, “Thank you 318

 Schumacher, 35.315

 Vikas, 8.316

 Vikas, 8.317

 “Language Technology Flash,” Vishwa Bharat@TDIL, July 2002. 318

96

for sending me copies of the newsletter. These issues are excellently produced and carry a lot of
useful information.” Similarly, a Cambridge University professor wrote, “Nowadays there is so 319

much work under way on various aspects of the computerisation of Indian languages that no one
person can hope to keep up to date with it all. Your Newsletter acts as a very valuable clearing
house for this information.” 320

Others, such as a representative from the Instituto de Lengua y Cultura Aymara (an organization
dedicated the Native American language known as Aymaran), even expressed the hope that TDIL
might serve as a model for their own language-planning efforts: “We in ILCA are very interested
in the advances in language technology that you are making, and wish to know more about
them, to see how we can apply similar measures here.” Finally, topping the list of prominent 321

officials was a representative from UNESCO, the cultural division of the United Nations, who
wrote in that the newsletter was “very informative and may be useful for developing our
programme Initiative B@bel” (dedicated to advancing “multilingual education” and “language on
the internet”). 322

Yet in some sense, TDIL’s efforts were hardly as novel as such responses made them seem. The
TDIL program may have only officially begun in 1991, but its philosophies drew on a long history
of language development on the Indian subcontinent. The language politics of the past three
centuries provided the discursive context – the terminology – that allowed programs like TDIL to
proceed. They also served to motivate certain changes in TDIL’s all-India approach, such as
advancing multilingualism. In the following sections, I trace the evolution of the language
regimes that characterized the Indian subcontinent in the colonial and post-independence eras,
including shifts in both the centers of linguistic authority and the stakes associated with each
language. I review the language politics of South Asia at large in the following sections, but take
an eye towards the subregion of Bengal, and later India and Bangladesh in the modern nation-
state era.

 “Language Technology Flash, July 2002, 5.319

 Ibid.320

 “Language Technology Flash, July 2002, 5.321

 Ibid.322

97

Figure 28. Cover of Language Technology Flash, July 2002

98

The British Colonial Era: Classification and Control

Prior to the imposition of British rule in India, the subcontinent was ruled for nearly two
centuries by the Mughals, who had reached it by traveling East from the Ottoman Empire.
Mughal control of India lasted from 1576 to 1757. During this period, Bengal represented the
country’s wealthiest and most industrially developed region, accounting for no less than 12% of
the entire world’s GDP. Mughal rule introduced the Indian subcontinent to Persian, known as 323

the language of “love, culture, literature, poetry, diplomacy, music, and charm.” Persian also 324

served as the high-status language of governmental administration. It was necessary to learn for
those performing administrative jobs, but otherwise coexisted with Sanskrit and many other local
languages throughout the region. By the end of Mughal rule, Bengal had become a quasi-325

independent state governed by the hereditary rulers known as the Nawabs of Bengal, whose use
of Persian in high offices had a significant influence on Bengali literature, which began to
incorporate Persian vocabulary into Bangla prose. At the same time, there was no coordinated 326

effort to constrain the use of Bangla in everyday life. To further complicate this picture of
linguistic hybridity, Portuguese missionaries based in the colony of Goa also began printing local
language books during this period, including Bengali-Portuguese dictionaries and grammars. 327

After first setting foot in India in the early 17th century, the British East India Company overtook
the Mughal Empire as India’s primary administrators in 1757. That was the year of the Battle of
Plassey, which brought the British East India Company a “decisive victory” over the Nawabs of
Bengal, and ushered in a new era of British colonialism. 328

In the ensuing years, British “Orientalists,” or scholars of the supposedly “exotic” cultures and
languages of the East, would establish linguistic hierarchies on the Indian subcontinent that still
largely stand to this day. For these “Orientalists,” part of the point of studying Indic languages
was to advance certain overarching linguistic theories of their own. By the late 18th century, 329

European linguists had become concerned with mapping families of related languages, which
sent them on a quest for the world’s oldest and most supposedly “pure” languages. In this vein,
linguist William Jones’s “Third Discourse on the Hindus,” which he presented to the British-
colonial institution known as the Asiatic Society in 1786, proclaimed the “marvellous [sic.]
structure” of Sanskrit grammar, and declared that its antiquity seemed to supersede that of both

 “Empire, Mughal - Document - Gale In Context: World History,” accessed June 30, 2022, 323

 Robert D. King, Nehru and the Language Politics of India, 13. 324

 Ibid.325

 Hanne-Ruth Thompson, Bengali: A Comprehensive Grammar (Taylor & Francis, 2010), 10.326

 M. Siddiq Khan, “The Early History of Bengali Printing,” The Library Quarterly: Information, Community, Policy 32, no. 1 (1962): 327

51–61.

 “Memoirs of the Revolution in Bengal, Anno Dom. 1757  : | Library of Congress,” accessed June 30, 2022, https://www.loc.gov/328

item/94840377.

 Khan, 53-4.329

99

https://www.loc.gov/item/94840377
https://www.loc.gov/item/94840377

Latin and Greek. After this revelation, India became a gold mine for researchers looking to 330

develop their own pet linguistic theories. Jones’s discovery suggested that Europeans could study
Sanskrit to learn about themselves, and thereby elevated Sanskrit to the highest status in the
hierarchy of Indic languages, with all other local languages relegated to “vernaculars” presumed
to be degenerate products of Sanskrit’s original “purity.” 331

Meanwhile, missionaries and typographers during this period began printing books from law and
religion in various local languages. These printing practices were critical to establishing local
vernacular literatures, and, in many cases, helped standardize local scripts. But they also had 332

their insidious angle. In some areas, British officers had been ordered to learn local languages to
aid in their administration, and works printed in the vernacular came to serve them as lesson
books or primers on the road to more efficient colonial exploitation. Indeed, according to
historian M. Siddiq Khan, during Company rule, the extensive production of vernacular books
was “aimed at destroying traditional patterns of authority through supplanting the Persian
language which had been the official tongue since the days of the great Moguls.” Languages 333

such as Bangla were purged of their Persian vocabulary, and forced to incorporate Sanskrit terms
instead.

The “Orientalists” responsible for manipulating Bangla, Persian, and Sanskrit in this way were
operating under the assumption that British governance would be easier, more efficient, and
more effective if conducted in vernacular languages. Some even claimed to harbor an
appreciation for vernacular languages on their own merits. Within the Company administration,
however, these so-called “Orientalists” were opposed by those known as the “Anglicists” (or
“Utilitarians”). The Anglicists insisted that colonial administration should be conducted entirely
in the English language and in Roman script, mostly out of distaste for the “vernaculars." 334

A fierce debate raged between Orientalists and Anglicists in the press throughout the early 19th
century, culminating in an infamous 1835 memorandum written by Sir Thomas Macaulay
entitled the “Minute Upon Indian Education.” In it, Macaulay wrote disparagingly of Indian
culture, claiming that a single shelf from a good European library was superior to the entire body
of literature ever produced by India and “Arabia”. English, he insisted, should be advanced as
India’s sole language of administration and education, which would in turn form a class of elite
Indians — “English in taste, in opinions, in morals, and in intellect” — who could take up

 Annie Montaut, “Colonial Language Classification, Post-Colonial Language Movements, and the Grassroot Multilingualism Ethos in 330

India.,” in Living Together Separately: Cultural India in History and Politics, 2005.

 Khan, 53-4.331

 Robert D. King, Nehru and the Language Politics of India.332

 Khan, 53.333

 Ramachandra Guha, India After Gandhi: The History of the World’s Largest Democracy, Reprint edition (New York/N.Y: Ecco, 334

2008), 155.

100

positions within the Company and work to advance its interests. Macaulay’s open contempt for 335

Indian culture notwithstanding, it’s worth noting that many upper and middle-class Indians at
the time also favored English education, seeing it as a means of raising their own social status,
since they had access to English-language instruction and stood to benefit from that privilege. 336

The English Education Act of 1835 made Macaulay’s recommendations official, transforming
English from the language of India’s foreign rulers, to one of the country’s own official tongues,
as indeed English would be declared post-independence.

By the turn of the 19th century, English had become so deeply entrenched in India that even the
leaders of India’s independence movement would generally converse with one another in
English, as they were used to discussing affairs of state in that language (although they could
and did still greet their friends and family in vernaculars). What’s more, the British had 337

succeeded in stratifying India’s languages into two categories: “pure and ancient,” and
“corrupted vernaculars,” despite the fact that many so-called “vernaculars” had extensive
independent histories of their own. In this context, “vernacular” itself became a loaded political
term. Indeed, by the turn of the 20th century, many Indian nationals would rebel against the use
of the term altogether, including the hobbyists discussed in the previous chapter. After their
efforts were termed ‘vernacular computing’ in a press article, one member posted a rebuttal --
and a plea: “This was the word [i.e., vernacular] used by British while referring to the languages
used by Indians, Africans, etc. meaning the language of slaves...I humbly request all patriotic
Indians to refrain from using the word ‘vernacular.’” 338

The next important development in India’s language policy came after another decisive battle
that occurred precisely one hundred years after the beginning of British colonial rule: the 1857
Sepoy Mutiny. The Sepoy Mutiny refers to a large-scale uprising against the rule of the British
East India Company by infantrymen in the Company’s army. Though the mutiny failed, it was
perceived by the Crown as a failure of the British East India Company to adequately govern its
dominion. As a result, the British parliament passed the Government of India Act the following
year, which established the British Raj. Under this new system, India would be administered
directly by the British government, rather than by their proxy, the British East India Company,
which carried important implications for the administration’s approach to linguistic data
collection.

The British Raj era of direct colonial rule transformed local understandings of language and
identity through a variety of enumerative activities. One of the most critical of these activities
was the Linguistic Survey of India, first proposed in 1886 by linguist and member of the Indian
Civil Service, George Abraham Grierson. The Linguistic Survey, which was conducted annually

 “Minute on Education (1835) by Thomas Babington Macaulay,” accessed June 30, 2022, http://www.columbia.edu/itc/mealac/335

pritchett/00generallinks/macaulay/txt_minute_education_1835.html.

 Acharya, 259.336

 King, “Introduction.”337

 Pavanaja, U. B. “[Indic-computing-users] Vernacular” Email, April 25, 2003.338

101

http://www.columbia.edu/itc/mealac/pritchett/00generallinks/macaulay/txt_minute_education_1835.html
http://www.columbia.edu/itc/mealac/pritchett/00generallinks/macaulay/txt_minute_education_1835.html

from 1894 to 1928, gathered important information about natives’ “mother tongues” that could
be used to more efficiently administer — and exploit — these populations. 339

Despite the longstanding use of data from the Linguistic Survey of India to help govern the
country into the 21st century, the uniformity and precision of the survey have since been called
into question. This is in part because the assumptions of the survey did not adequately capture
the nuances of language use on the ground. Before the British began collecting census data,
Indians tended to practice what sociolinguists call “grassroots multilingualism,” or switching
languages as needed depending on their locale. Montaut describes the classic example of “the 340

Gujarati merchant who uses Kacchi (a dialect of Gujarati) in the local market, Marathi for wider
transactions in the region, standard Gujarati for readings, Hindustani when he travels (railway
station), Urdu in the mosque, with some Persian and Arabic, but also sant bhasha in devotional
songs, his variety of Gujarati for family interaction, English when dealing with officials.” 341

Given this rich multilingual context, Indians understandably had a difficult time telling survey
collectors what should be considered their proper “mother tongue.” Local language use was
simply “more intuitive,” with more “fuzzy ways of locating” which language should be used in
which context. Over time, however, the Linguistic Surveys enumeration practices itself worked 342

to help inculcate a “radically new representation of the relation of the speaker to his speech,”
indoctrinating everyday Indians in the belief that they ought to have “one language, one name,
one identity.” For this reason, according to sociolinguists, the British Raj brought about a new 343

and unprecedented “linguistic consciousness [that] seemed to have stemmed from the
classificatory passion of the colonial agenda,” which in turn would carry significant repercussions
when it came to redefining Indian national identity in the independence era. 344

The Independence Era

As we have already seen, over the course of the 20th century, language became increasingly
intertwined with the sphere of politics, turning language itself into an essential component of
national identity. Two core issues continued to plague India’s political leaders up to and through
the 1947 Partition splitting British India into two independent nation states: first, the question of
national language, and second, the question of subnational linguistic states. These issues affected
both India and Pakistan, eventually leading to policies affirming regional linguistic identities in
India, and to the creation of the new nation state of Bangladesh from the former Pakistan.

 Montaut, 87.339

 Montaut, 99.340

 Ibid.341

 Montaut, 87.342

 Montaut, 85.343

 Montaut, 87.344

102

Before delving into these issues, however, it is important to understand the radical shift that
national self-determination represented in comparison to the language politics of the preceding
centuries. According to historian Robert D. King, it is only relatively recently that the boundaries
of the nation-state were made to match up with the boundaries of a linguistically homogeneous
population; prior to that, it did not matter if someone might be speaking a different language as
they were ruling over you, as was the case in Mughal and British India. With the global ascension
of nationalist ideology in the late 19th century, however, locals in India — much like locals in
Europe — found it increasingly intolerable to have one language imposed upon speakers of
another. 345

In addition to the rise of nationalist ideology, national identity also came to play a critical role in
transforming India’s language policies. As linguists and historians have emphasized “the political
link, more or less artificially created, between language and political or administrative needs.” 346

As Montaut writes, “if we see language not merely as a tool for communication, nor even as a
way of enacting one’s social role(s), but as a means of asserting one’s cultural or religious
identity and an icon for a group identity, one can understand how it can become an intensely
burning issue.” Indeed, as I discuss in the following chapter, the Unicode debates that roiled 347

India in the 2000s had much less to do with technical specs than with deeply-felt beliefs about
“cultural” and “group identity.” So deep did the emotional valence of “cultural identity” run that
language came to take on symbolic or even spiritual resonance as the core essence of what made
Bengalis Bengali, and Indians Indian.

Perhaps understandably, at the time of India’s inauguration as an independent nation-state, the
dominant concern of its leaders was maintaining national unity despite the country’s enormous
diversity of religious, linguistic, and cultural differences. Religious differences had already
resulted in widespread violence in the years leading up to the 1947 Partition, and had only
become worse during the actual process of imposing the new borders. In theory, the 1947 348

Partition divided the Indian subcontinent into two nation-states based on religion: Pakistan
would serve as the Muslim homeland, and India would cover everyone else (mostly Hindus, but
also a substantive Muslim minority, along with a number of Jains, Christians, Buddhists, and
Sikhs). Dividing the two countries based on religion reflected a similar set of values as those that
had already affected the region’s linguistic identities: first, the enumerative practices of the
British Raj had entrenched group identities among its colonized subjects, and second, the
administrative practices of the British Raj had tied resource allocation and political power to
these identities (as with “separate electorates” assigned at one point to Hindus and Muslims in
the region). 349

 King, 25.345

 Montaut, 85.346

 Montaut, 85.347

 Guha, 222-245.348

 Ibid.349

103

Figure 29. Map Of British India At 1947 Partition (Map By Julius Paolo)

In much the same way, during the first two decades of independent governance on the Indian
subcontinent, language would prove to be a serious source of political disorder. First was the
issue of linguistic states: should the country be subdivided into separate localities on the basis of
language (which would mean, in essence, subdividing it on the basis of ethnicity)? This so-called
“linguistic principle” had already been tried by the British when they had partitioned Bengal into
Eastern and Western wings back in 1905, hoping to quash the region’s anti-colonial agitation.
There, the linguistic principle was used to justify transferring Oriya-speaking communities out of
Bengal into Assam and Orissa. Although furious local protests had led to the reunification of
Bengal’s two wings within a decade, this first Bengali partition would have lasting linguistic
effects, not least of which was making the Bengal presidency synonymous with the Bangla
language. 350

In a similar vein, in the 1930s, the idea of subdividing India into smaller linguistic states had
attracted the attention of the Indian National Congress, the political party shepherding the new
country into independence. In 1948, however, the committee that had been appointed to
investigate the feasibility of linguistic states, known as the Dar Commission, strongly advised
against the idea, arguing that such linguistic division would not be “in the larger interest of the

 Montaut, 85.350

104

nation… [because it] would create new minorities.” At the time, India was already operating 351

as a federation of smaller states, but each of these were linguistically heterogeneous, especially
the area of modern-day Tamil Nadu (then known as Madras), which included speakers of Tamil,
Telugu, Malayalam, Kannada, and others.

This uneasy status quo would be utterly upended on October 19, 1952. On this pivotal historic
milestone, revolutionary activist Potti Sriramulu started a fast unto death in support of a Telugu-
speaking state. As leader of the Andhra movement, Srimamulu represented an organization
dating back to 1913: the Andhra Mahajana Sabha, or Mayajana Socialist Party. From the earliest
days of its existence, this movement had demanded that Telugu be instituted as the [sole/
primary] language of instruction in schools, and that it be granted separate administrative status
in recognition of the majority presence of Telegu speakers in the region. The movement reached
its tipping point in July 1952, when representatives of the Madras province officially filed a
motion in the National Assembly for a Telugu-speaking state. While the motion gained the
support of several Congress members, it was ultimately rejected by supporters of then-Prime
Minister Jawaharlal Nehru, who argued that linguistic states were far too risky a prospect in the
newly-independent and precariously-united India. In response, Sriramulu continued to fast for a
total of fifty-eight days, all the way until his death on December 15, 1952. To the shock and
dismay of Nehru his compatriots, Sriramulu’s martyrdom threw the entirety of Andhra into
widespread violence and devastating chaos. After two days of unchecked destruction, including
several deaths, Nehru acquiesced to the demand for a Telegu-speaking Andhra state, which was
formally inaugurated on October 1, 1953. Nor was that the end of Sriramulu’s influence. The 352

Andhra movement for statehood proved historically significant across the continent, resulting in
waves of emulative language movements. In 1953, a State Reorganization Commission
recommended the creation of new linguistic states in light of this unrest, which resulted in the
formation of fourteen new states by 1956. Sociolinguist Annie Montaut has gone so far as to 353

call this a “never-ending process of secession, if not balkanization, with a continuous creation of
new minorities enduring increasingly worse conditions.” As earlier chapters in this dissertation 354

have already explained, similar popular protests would occur in Pakistan as well, leading to the
creation of Bangladesh as a new ethnolinguistic nation state, and similar language movements by
other constituencies as well (though no others would result in secession). 355

In India, there still remained the question of the country’s overarching national language, which
produced contending views amongst political leaders in the years leading up to Partition. Some
wanted to promote Hindustani, a lingua franca of numerous Indian dialects that had been
invented as a “golden mean” to bridge the Hindi commonly spoken in Northern India with the

 Guha, 225.351

 Guha, 232.352

 Ibid.353

 Montaut, 87.354

 Tariq Rahman, Language and Politics in Pakistan (Karachi: Oxford University Press, 1997).355

105

Urdu commonly spoken in the South. But this compromise position came with its own 356

challenges: Hindus in the Indian National Congress supported the use of the Devanagari script
for Hindustani, whereas the minority Muslim population wanted to see Hindustani written in
Arabic script instead. In an attempt to bridge this seemingly insurmountable divide, some
staunch supporters of Hindustani even proposed using the Latin script to transliterate the
language, despite the uncomfortable colonial overtones of such a strategy. However, the idea
didn’t go far. As Mahatma Gandhi wrote at the time, India could only find true freedom by fully
extricating itself from the destructive legacy of British rule, including the “crucial instrument of
colonization, namely the English language.” As opposed to utilizing Latin script, then, Gandhi 357

called for elevating “vernacular languages” instead - including granting schoolchildren the right
to education in their mother tongue – and declaring Hindustani the national language of the
country as a whole, written with the Devanagari script that the greatest number of Indian
citizens would be able to understand.

Over the course of constitutional negotiations, legislators came to a compromise: rather than
using Devanagari script for Hindustani, which actively excluded Muslim speakers, they would
simply use Devanagari script for Hindi, the language it was normally associated with, and declare
that the so-called “Official Language of the Union,” with no language claiming the status of the
country’s “national language.” “Vernaculars” would be used in local schools and offices; Hindi 358

would be used in federal courts and legislatures. To help appease Urdu-speaking South Indians
who might feel shortchanged by this arrangement, legislators promised that federal institutions
would also use English during an initial fifteen-year period. Over those fifteen years, officials
would attempt to grandfather in Hindi across the nation through educational initiatives.

When that transitional period was up in 1965, however, and the time actually came to make the
switch to Hindi-only institutions, major anti-Hindi protests broke out across the state of Tamil
Nadu, marked by rampant violence between police and students. Self-immolation emerged as a
common protest tactic. After a full month of uninterrupted chaos, agitation, national leaders
declared English another official language of the Indian people, giving the language equal status
with Hindi for the indefinite future. Although this move perpetuated British colonial influence, 359

it also served as an equalizing measure for India’s non-Hindi speaking population.

Even as it was first debating the question of the country’s “official language,” Congress also
identified fourteen major regional languages that would be designated “scheduled languages.”
These “scheduled languages” were each granted an official representative on the Official
Languages Commission, which would steer national language planning policies in the years to
come. Speakers of “scheduled languages” were also granted the right to conduct local 360

 Guha, 225.356

 Guha, 232.357

 Guha, 389-92.358

 Ibid.359

 Montaut, 99.360

106

education in that language. Although seemingly pluralistic, this institutional recognition of
certain languages actually sparked significant competition between language groups – those who
had not been included started to fear that they might be endangered. Yet widespread 361

recognition of local languages, along with the establishment of dedicated linguistic states, also
led to compromise, cooperation, and a greater sense of national unity. Indeed, according to King,
by the 1980s, “language [was] no longer the threat to the national unity of India that it was once
considered to be.” In the modern era, India has come to embrace multilingualism at every 362

level of governance: road signs in the region are often written in as many as four different
scripts; educational curricula are designed to meet the specific needs of localized language
communities; and every provincial state can “claim to have a literature, a history.” 363

By the 1980s, then, India, along with South Asia more broadly, had gone through several
significant shifts with respect to language planning. A relatively ad-hoc “grassroots
multilingualism” had given way to a “count and conquer” policy under British rule. This, in turn,
exacerbated ethnic and linguistic cleavages to the point that post-Partition India faced literal
language riots. The newly independent nation-state had to navigate rivaling tensions between
monolingualism and state-sanctioned multilingualism, which mapped onto the tensions between
national unity and pluralist political representation. Though I have chosen to focus primarily on
post-independence language politics in India, many of the same conflicts regarding national
language and the status of linguistic states were also unfolding in Pakistan, resulting in the
totally independent linguistic state of Bangladesh separating from East Pakistan in 1971.

In recent years, scholars have come to situate the overarching practice of “language planning”
during these volatile years within more specific historical contexts. Language planning, they
argue, was not an abstract and idealized set of policy decisions, but instead a historical and
culturally contingent phenomenon affected by the broader turmoil occurring in postcolonial
states during its peak throughout the 1950s and 1960s. According to sociolinguist Jiří Nekvapil,
“The issue of “language planning” arose only in connection with the decline of the colonial
system and the processes of modernization in the developing countries,” a context in which “it
was considered a type of societal resource planning… firmly anchored in the theory of social and
especially economic planning of the time.” Sociolinguist Jan Blommaert has similarly argued 364

that the “decolonization of huge parts of the world after WWII (and especially in the 1960s) and
the introduction of the paradigm of ‘development’ entailed invitations to experts worldwide to
contribute to the development and modernization of third world societies.” Increasingly, 365

researchers emphasize that language planning evolved to deal with the problem of multilingual,

 Montaut, 99.361

 King, xii.362

 Guha, 243.363

 Jiří Nekvapil, “From Language Planning to Language Management,” Sociolinguistica Jahrbuch (2006) 20, no. 2007 (February 20, 364

2007): 92–104, https://doi.org/10.1515/9783484604841.92, 92.

 Jan Blommaert, “Language Planning as a Discourse on Language and Society: The Linguistic Ideology of a Scholarly Tradition,” 365

LANGUAGE PROBLEMS & LANGUAGE PLANNING 20, no. 3 (1996): 199–222, 199.

107

https://doi.org/10.1515/9783484604841.92

multi-ethnic states – states that could only become unified and distinctively modern through the
promotion of a single national language in precisely the vein of ‘one nation, one people, one
language.’

Despite the nationalistic insistence on linguistic unity as a guarantor of national unity, however,
monolingualism has largely given way to a less dogmatic view of national language, thanks in
large part to the persistent multilingualism of major postcolonial states like India and South
Africa. Whereas former Prime Minister Nehru and his compatriots pushed for a single national
language to unite all of India, and tried to forge state lines based on factors other than language
usage to prevent linguistic fracturing, grassroots protests demanded otherwise.

Only in the full historical context of Indian language politics can we understand what was so
significant about the language technology policy that emerged in India in the late 20th century.
Even seemingly impersonal technical codes, such as ISCII, can hold powerful emotional
resonances among those who were subject to Hindi-centric government policies as recently as
one generation ago, and even an obvious coincidence or oversight, such as basing ISCII on the
Devanagari script, can awaken a strong sense of grievance amongst non-Hindi language
communities tired of being left out of the national conversation.

Yet by the time of Vikas’ TDIL program, India had already largely embraced multilingualism at
the highest administrative levels, including scheduling multiple regional languages and
designating several of them “classical languages” in acknowledgement of their long histories and
vibrant literatures. This historic commitment to multilingual forms of expression would in turn
be codified into multi-script software schemes, such as ISCII and the GIST terminal discussed
previously in this chapter. Throughout the remainder of this chapter, we will see TDIL leadership
interrogating Unicode not only on the needs of India’s Hindi speakers, but those of all of the
country’s major language communities. In other words, in the new era of technological
development, multilingualism is no longer characterized as a symptom of backwardness, but
instead as an essential tenet of modernization. Vikas’s keynote situates multilingualism as an
undeniably enriching force in Indian culture to date, and asserts that finding multilingual
technology solutions will be part of the journey that raises both economic prosperity and human
flourishing in India’s future.

TDIL and Unicode: A Language Politics for the Internet Age

Having covered the high-stakes language-politics implications at play, we turn now to the
confrontation between TDIL and external organizations such as the Unicode Consortium. By
2000, Vikas had decided that India needed to be a voting member of the world’s major
international committees on multilingual computing — namely, the Unicode Consortium and the
W3C, or World Wide Web Consortium, both of which were volunteer-led organizations
responsible for overseeing open standards. Vikas’s insistence on Indian representation was a
remarkable, unprecedented move, reflective of the new language politics of the digital age. Up to
this point, both consortiums had been run by private software companies alone, and hence had
been dominated by North American and European perspectives. Vikas, however, was able to

108

exploit the unique structure of these volunteer organizations, which were themselves a novel
trend in the technology sector. In theory, membership was open to any institute or individual, so
long as they paid the appropriate membership dues — but these dues ran the rate amount of
$10,000 USD per year at the time (although this rate has changed since). As critics have rightly
noted, industry-led consortia were democratic and open typically only in name. Would-be 366

participants also faced high barriers to entry in the form of rarified technical expertise, which
stood in the way of the consortia’s supposed goals. In this context, India’s unusual engagement
with Unicode presents an alternative vision of the possibilities of multilingual international
collaboration with the Global South.

Notably, Unicode’s membership structure contrasted sharply with that of other international
multi-stakeholder organizations at the time, particularly that of the Unicode Consortium’s sister
committee, the International Organization for Standardization (ISO) Working Group 2. ISO was
an international treaty organization, born in 1947 from the rebuilding efforts following World
War II, and originally had little to do with computing; members focused on setting uniform
mechanical engineering standards instead ISO was based in Geneva, Switzerland, and thanks to
its heritage as an Allied-forces organization, was largely a “European Club” at the time of its
founding. Over the course of the 1950s and 60s, ISO membership steadily grew thanks to the 367

implementation of discounted membership fee programs, along with direct outreach to
developing countries. Then, throughout the 1960s and 70s, ISO’s Information Technology 368

subcommittee (known as Joint Technical Committee 1, or JTC1) developed various international
character code standards, including ISO 8859 (used for switch codes) and ISO 646s (used for
national character codes).

Ultimately, this character code subcommittee/working group (SC2/WG2) would become
responsible for beginning to design an international character code (ISO 10646) in the late
1980s that would be similar in aim to the Unicode Standard. After Unicode version 1.0 was
released in October 1991, however, the Unicode Consortium and ISO WG2 began to cooperate
with one another in earnest so that they could establish a truly common standard. Specifically,
the two consortia agreed to pursue “synchronization,” wherein both standards would be aligned
to have identical content, although each would still be maintained by its respective
organizations. Unicode’s next two releases, Unicode 1.1 and 2.0 (which came out in June 1993
and July 1995, respectively), aimed to align Unicode more closely with ISO, and hence revised or
updated their component elements so as to match existing ISO standards. After that point, 369

synchronization took the form of reviewing proposals for new additions to Unicode at the annual
Unicode Technical Committee (UTC) meeting, and then bringing those same proposals to the

 Laura DeNardis, The Global War for Internet Governance (Yale University Press, 2014), https://www.jstor.org/stable/j.ctt5vkz4n.366

 International Organization for Standardization and Central Secretariat, Friendship among Equals: Recollections from ISO’s First Fifty 367

Years. (Geneva: ISO Central Secretariat, 1997).

 ISO, 46.368

 Isabelle Zaugg, “Digitizing Ethiopic: Coding for Linguistic Continuity in the Face of Digital Extinction” (PhD diss., American 369

University, 2017, 65.

109

https://www.jstor.org/stable/j.ctt5vkz4n

annual ISO SC2/WG2 meeting for final review and acceptance into ISO 10646. In this way, the
two standards remain utterly in sync.

These inter-consortia dynamics are important to understand because they represent two
competing modes of engagement for those interested in shaping open-source standards. As an
international treaty organization, ISO structures its membership by granting equal representation
to various national delegates. Two of these representatives, who are chosen from their countries’
respective national standards organizations, show up to vote each year on the next iteration of
ISO 10646. ISO annual fees are somewhat opaque, determined by algorithm weighing a
prospective member country’s “economic importance.” In contrast, Unicode is agnostic to each 370

of its member’s affiliations; any dues-paying applicant, whether it be an individual, a company, a
research institute, or a government body, can join the Unicode Consortium, as long as they pay
the preset fee ($10000 during the events of this dissertation; $35 for students to $21000 for
corporations at time of writing). In contrast to ISO’s older, Cold War-era model of mutual 371

governance, Unicode’s ad-hoc, free-market approach reflected the popularity in the 1990s of
other industry-led voluntary consortia such as the Internet Engineering Task Force (IETF) and
World Wide Web Consortium (W3C).

Now we can appreciate just how remarkable it was to see India’s Ministry of Information
Technologies join the Unicode Consortium as a full voting member in the year 2000, after having
already become an ISO member in 1987. Not only that, but when India joined Unicode, it did so
at the voting member registration tier, even though actual votes were rarely carried out at the
annual UTC meetings. This was because Unicode’s highly procedural, consensus-based approach
kept truly contentious issues from ever coming up for debate; instead, controversial motions
would be repeatedly tabled, which meant that some recurring discussions would drag on for
multiple years without ever coming up for a decisive vote. Even if becoming a voting member 372

didn’t grant India any significant influence over Unicode’s decision-making process, it did get
India in the door at the annual UTC meetings, along with granting India access to Unicode’s
internal mailing list and private document registry. India’s choice of membership tier more
importantly showed, as many UTC members acknowledged, a serious engagement with
Unicode’s goals. Many private companies, in contrast, had become paying members at lower 373

tiers, allowing them to sponsor and support Unicode’s work more broadly, without necessarily
having to engage with Unicode’s specific character proposals. In all of these ways, India’s
membership represented an unprecedented level of participation in Unicode’s aims.

 “ISO Membership Manual.” accessed June 28, 2022, https://www.iso.org/files/live/sites/isoorg/files/store/en/PUB100399.pdf.370

 “Membership Levels.” accessed June 28, 2022, https://home.unicode.org/membership/membership-levels/371

 Ken Whistler, interview with author, February 12, 2020. 372

 Ibid; Lisa Moore, interview with author, April 26, 2022; Debbie Anderson, interview with author, January 17, 2020.373

110

Figure 30. Letter From Om Vikas to Unicode Technical Committee

India’s initial application for membership was followed by a formal letter of introduction in
2001. Vikas announced TDIL’s intention to propose new alterations to the Unicode Standard, 374

attaching draft recommendations in the form of the May 2001 edition of Vishwa Bharat, TDIL’s
monthly newsletter, which devoted a special issue to the recommendations. The issue was 375

twenty-four pages long, and included the usual updates on workshops and multilingual software
development. Unlike previous issues, however, this edition included script-by-script comments on
the Unicode Standard to date. One section, entitled “Feedback on Unicode 3.0,” began,

Both the National [ISCII] standard and the Unicode standard will co-exist. It is expected that
the coordinators of the Resource Centers for Indian Language Technology Solutions (RC-
ILTS) will convene discussion meetings with representative(s) of the State Government and

 Vikas, Om. “Letter from the Government from India on “Draft for Unicode Standard for Indian Scripts” Unicode Technical 374

Committee Document Registry. L2/01-303.

 “Language Technology Flash,” Vishwa Bharat@TDIL, May 2002.375

111

the[ir] language expert[s], and finalize the updates for [the] UNICODE standard (version
3.0) on [a] priority basis. 376

The section continued by offering preliminary feedback on existing Unicode conventions from
local Indian linguists and representatives of India’s state governments. So thorough were their
recommendations that when the newsletter issue was added to the official Unicode Document
Registry, as per official procedure, the representative responsible for the upload couldn’t resist
adding a comment regarding its significant file size. 377

Figure 31. Snapshot of Unicode Document Registry

Despite the double exclamation-point, Unicode’s technical staff clearly took these
recommendations seriously. After all, India’s impressive membership application, along with their
Vishwa Bharat special issue, proved that this was “the point at which India decided it could have
a fruitful relationship with the Unicode Consortium.” Rick McGowan drafted a response on 378

behalf of the Unicode Technical Committee within the week, which went up for discussion at the
following UTC annual meeting in November. McGowan’s initial draft began,

The document [i.e., the special issue of Vishwa Bharat] asks for some quite reasonable
additional characters, provides some annotations and information for block introductions,
and also requests a number of codepoint changes… UTC would like to thank the authors
for writing this detailed analysis of Indic script encoding within the Unicode standard, and
looks forward to discussion of the various points raised by the document. 379

Ultimately, the final version agreed upon by UTC voting members included much of the same
preamble, but added the notable caveat that “this document [e.g., the UTC’s official rejoinder] is
an initial technical response, and the position of the UTC on specific points may change in view
of additional information from the Government of India on particular characters. The committee

 “Language Technology Flash,” May 2002, 15.376

 “Unicode Document Registry.” accessed June 28, 2022, https://www.unicode.org/L2/L2001/Register-2001.html.377

 Ken Whistler, interview with author, April 23, 2020.378

 McGowan, Rick. “Draft UTC Response to L2/01-304, "Feedback on Unicode Standard 3.0”" Unicode Technical Committee 379

Document Registry. L2/01-305.

112

looks forward to discussion of the various points raised by the document, so that understanding
and agreement can be reached about specific resolutions.” 380

Though the response was cordial and the general sentiment was one of welcoming exchange, the
UTC’s response held strict to its founding principles. Amongst several requests for other major
language communities, the Indian Ministry had requested changes to Unicode’s encoding of the
Bangla language: they wanted to add Bangla-specific punctuation marks, as well as four new
characters (including khanda ta); they also recommended changing the names of three existing
codepoints. UTC responded that the punctuation marks India was requesting had already been 381

encoded in the Devanagari script section of Unicode. Of the four requested characters, UTC
accepted only one; the others, they claimed, would need to be considered in greater detail,
demanding that India present further evidence to justify the changes. Otherwise, they insisted,
India’s the requested character additions would lead to an unwanted “change to the model for
Bengali.” Finally, the proposed name changes for existing codepoints were accepted as 382

additions rather than revisions, with UTC citing its own stability policy, which prohibited making
any retroactive changes to the Unicode Standard once an edition had already been published. In
short, India got very little of what they wanted, demonstrating that a paid membership and
signed official letters were not enough to make change in this new paradigm.

At the same time, it is worth noting that UTC’s official communications with the Indian Ministry
stood in stark contrast to those we saw in the previous chapter being exchanged between
Unicode staffers in the West and local language computing hobbyists. Where the channels of
communication were informal mailing lists in the previous case, there were now signed, sealed
official letters being passed between the two parties: the Unicode Consortium and the
Government of India. Where the sources were previously temporary blog posts that were both
searchable online for everyone, but not delivered to anyone in particular, there were now regular
newsletters that were systematically distributed. And where the bulk of expertise came from
anonymous or self-taught sources, it was now being solicited from government and linguistics
experts and brought to the fore. The very existence of these two forms of exchange highlighted a
burgeoning space for public discourse on the internet in the early aughts.

After a brief lull in activity, the Unicode Consortium began hearing from Dr. Om Vikas and the
Ministry of Communications and Information Technology once again in 2003. This time, Vikas
was determined to make more of a dent in the encoding standard.

In March of 2003, the Unicode Consortium held its 94th technical committee meeting, which Dr.
Vikas notably attended. There, Vikas presented original slides on the status of various Indic
scripts, beginning with a description of what he called the general “linguistic scenario in India” –
e.g., how many different languages were spoken, and where these languages ranked globally in

 McGowan, Rick. “UTC Response to L2/01-304, "Feedback on Unicode Standard 3.0", (repl. L2/01-305)" Unicode Technical 380

Committee Document Registry. L2/01-430R.

 “Language Technology Flash,” May 2002, 20.381

 McGowan, Rick. “UTC Response to L2/01-304, "Feedback on Unicode Standard 3.0", (repl. L2/01-305)” 5-6.382

113

terms of numbers of speakers. He then moved on to TDIL’s grand vision for India’s techno-383

linguistic future, presenting the “A B C” Technology Development Phases that the agency had
coined two years prior. India’s current top priority, he said, was to determine “if the existing
Unicode Standard for Indic scripts [is] fulfilling the requirements of all the Indian languages,”
rather than unfairly privileging only a few. Toward this end, the Ministry of Information 384

Technology had organized a number of meetings between linguistic and software industry
experts within India’s borders to identify existing deficiencies in the Unicode Standard as it
stood. Reaching the agreement that he was about to present “took pretty good time.” But the 385

results, he assured the Consortium, would be well worth it.

Before moving on to his specific encoding proposals, however, he emphasized how important it
was to get the nomenclature of characters exactly right in the Unicode Standard: “once a
character is encoded with the wrong name, it always creates confusion among the user group.” 386

For instance, the Devanagari symbol for Halant (a computing term for a joining symbol) was
called a Virama in the Unicode Standard, a term which the user community had always
understood to refer to a kind of punctuation mark. This sloppy, inattentive terminology could
only create ongoing confusion. (What Vikas didn’t mention was that the wider community
objected deeply to the use of the term “virama” altogether, as a “virama” only existed in any form
in the Devanagari script, making the concept all but inscrutable to India’s other language
communities, including Bangla and Tamil, which used terms such as “hasanta” or “pulli”
instead.) Vikas then presented several new character proposals, many of which echoed the
requests from the special issue of Vishwa Bharat sent in 2000, and had been re-submitted as
formal proposals by his TDIL colleague Manoj Jain a few days before the current presentation. 387

Vikas ended his presentation with a bold, provocative proposal: he called for Unicode to host the
next conference in India “to benefit the Multilingual Software Industry in India and the
neighboring countries.” Last, he closed with TDIL’s utopian vision: “Government, Academia,
Industry together to play globally and to serve locally in multilingual computing.” 388

The Unicode Technical Committee would make note of this presentation and take a few steps
accordingly. It still wasn’t willing to make the wholesale changes that the Indian Ministry of
Information Technology was requesting. Many of these requests would require further
investigation. But, the impact of India’s efforts were apparent in the action items the UTC would
post for itself in the days after Vikas’ presentation. They included setting up a new “Indic”

 Vikas, Om. “Unicode Standard for Indic Scripts,” Unicode Document Registry, L2/03-102, 3.383

 Vikas, Om. “Unicode Standard for Indic Scripts,” 6-11.384

 Vikas, Om. “Unicode Standard for Indic Scripts,” 12.385

 Vikas, Om. “Unicode Standard for Indic Scripts,” 13.386

 Gov’t of India. “Proposed Changes in Indic Scripts ,” Unicode Document Registry, L2/03-101.387

 Vikas, Om. “Unicode Standard for Indic Scripts,” 39-40.388

114

mailing list and arranging for a group of UTC representatives to visit India to engage in further
dialog with local scholars. 389

Figure 32. Closing Slide of Om Vikas’ UTC Presentation

The Indic mailing list started up only a few days later, beginning with posts sharing the
documents that had been circulated at the recent UTC meeting, most prominently Manoj Jain’s
specifically character proposals. Although seemingly humble in its origins, this Indic list will go 390

on take particular significance in our final two chapters as the space where the khanda ta debate
will finally be hashed out, bringing centuries of language controversies and international power
imbalances to a head. For now, it’s worth noting that the Indian government and its
understanding of contemporary language politics was pushing the Unicode Consortium to
recognize its diplomatic role, despite its technical founders’ best efforts.

Bangladesh in the Digital Sphere?

On a final note for this chapter, whereas India had come to embrace the novel governance
structures of technology consortia like UTC, Bangladesh — with its comparatively under-
developed technological infrastructure — was still stuck reaching out over more traditional

 McGowan, Rick. “UTC #94 Action Items,” Unicode Document Registry, L2/03-117, 94-A22-23.389

 McGowan, Rick. “[indic] Document copies,” Email. March 14, 2003.390

115

channels. While India was joining the Unicode Consortium as a full member in 2000, Bangladesh
was still relatively ignorant of its role in international digital standards-making.

Prior to the September 2000 ISO meeting in Athens, Bangladeshi delegates was requesting
“harmonization” between the newly-released BDS 1520:2000 national standard (Bangladesh’s
analog to ISCII) and ISO 10646. Notably, the only difference between the two that they noted
was the infamous character khanda ta. Michael Everson, a UTC representative from Ireland, 391

posted to the Unicode mailing list to pass along Bangladesh’s request, along with an admission of
his own lack of expertise in the matter: “I am at the WG2 meeting in Athens where the character
is being discussed, but we don’t know how to evaluate it.” Three country delegates had chimed 392

in during the ISO discussion without coming to any conclusive answers. The delegate from Japan
only expressed confusion about where this new standard would stand in relation to the previous
one (BDS 1520:1997). The delegate from India, meanwhile, emphasized the intrinsic need to
maintain alignment with other Indic scripts, or else the inter-workings of ISCII encodings would
be compromised. Finally, the American delegate, Dr. Ken Whistler, who had also been an early
developer and core member of Unicode, affirmed that interoperation with ISCII would indeed be
an issue, and that many open questions remained on this issue. In short, khanda ta was 393

already gaining a reputation as a contentious, ambiguous issue. Hence the concurrent message
out to the Unicode “experts list” – which was in fact the Unicode mailing list open to the public.

Everson’s post about Bangladesh’s request for Khanda Ta received a quick response. Abdul Malik,
who was apparently a Bangladeshi native (based on his email domain), explained again that
khanda ta was a form of ta, equivalent to ta with a silenced inherent vowel. The reason the BDS
standard included khanda ta, he speculated, was because that standard did not have control
characters (such as virama, zwnj, or zwj) to trigger a khanda ta. It was an “immature” standard
that had yet to define rules for rendering, a process which, in theory, would lead to a process for
displaying khanda ta. Malik did include an important caveat, however, that “A representative of
the Bangladesh Standards and Testing Institution (i.e., the instigator of the proposal) should be
better placed to answering these questions than me, anyway…” 394

Even in the course of this short interaction, we can already see the hierarchical imbalances and
structural differences between the ISO and Unicode communities. The Unicode “experts list” was
understood to have a deeper knowledge of scripts and encodings, and a wider range of expertise
over their implementation. UTC communications were as likely to happen virtually as in physical
space, unlike ISO communications, which took place only during in-person meetings. And ISO

 Bangladesh SC2/WG2 N2261, “Synchronization of Bengali coded character set national standard and ISO 10646-1 on character 391

U+09BA, KHANDATA,” Unicode Document Registry, L2/00-303.

 Everson, Michael. “Request about Bangla/Bengali.” Email, September 20, 2000.392

 Umamaheswaran SC2/WG2 N2353, “Minutes of the SC2/WG2 meeting in Athens, September 2000 (repl. L2/00-318)” Unicode 393

Document Registry, L2/01-050.

 Malik, Abdul, “Re: Request about Bengali/Bangla,” Email. September 20, 2000.394

116

was willing to defer expertise to the UTC over national standards bodies, especially due to the
former’s accessibility and promptness in responding.

At this point, Everson’s action items included contacting the Bangladesh standards institute,
BSTI, and the Unicode mailing list – although, as we might have expected, only the latter drew
any kind of response timely enough to shape the conversation. In the ISO meeting notes, the 395

only verdict reached was:

Although terse and inconclusive, this ISO document would prove an important point of reference
for Andy White when he first began to post critiques of the Indic FAQ in 2002. At that time,
White noted that the response included the recommendation to render khanda ta according to
the Unicode/ISO 10646 model, even though that diverged from what was currently posted in the
Indic FAQ (by then, Apurva Joshi’s edits had already been adopted). 396

White’s accusation of inconsistency instigated a long and hotly-debated thread that ultimately
drew in UTC members to the conversation. Among these was Ken Whistler, who was a regular
attendee of both ISO and Unicode meetings; angrily, he spit back that the ISO resolution could
not be interpreted as definitively assigning the sequence of codepoints that would render khanda
ta - the Indic FAQ still took precedence. The only point that the ISO resolution made, he insisted,
was that the BSTI proposal had not been accepted, “on the basis of *this* feedback from a
Bengali expert [Malik] on the Unicode list.” 397

Why do these intricate twists and turns on long-lost internet debate boards matter? As I’ve
argued throughout this dissertation, these seemingly nit-picky decisions set the standards for
language users worldwide, revealing much about the ideologies of various institutional
stakeholders and shaping and constraining the power differentials inevitably embedded within
the technical standard. As the discussion around khanda ta dragged on over the ensuing years,

 Umamaheswaran SC2/WG2 N2353, “Minutes of the SC2/WG2 meeting in Athens, September 2000 (repl. L2/00-318)” 28. 395

 White, Andy. “ISO 10464, Unicode & The FAQ.” Email, November 21, 2002.396

 Whistler, Kenneth, “Re: ISO 646, Unicode & The FAQ (Bengali Khanda Ta).” Email, November 21, 2002.397

117

users reasonably started to ask why the Unicode staff seemed so stubbornly resistant to making
what seemed like such a simple addition. As we can see here, one answer is that Unicode staff
placed a strong priority on principle and process, as opposed to flexibility and an interest in
outcome. It mattered precisely what was said in ISO meetings, and what had been approved
there. It mattered precisely which documents could be said to supersede others. It mattered
precisely what Unicode staffers considered it within the scope of the Standard to define. And
while such dogmatic adherence to doctrine had the benefit of consistency for implementers of
the Unicode Standard, it also risked propagating mistakes or inconveniences that language
communities were beginning to raise.

Whistler’s final word on the matter would be as follows:

I have not digested all the argumentation in the last month about
this topic, so cannot say what I feel the *right* answer [with respect to rendering rules], finally,
is for this. But now, please, stop speculating about how things
got to be the way they are, stop arguing about whose specification
trumps whose (a statement in a WG2 resolution which is not reflected
in the ISO 10646 standard or a statement in a Unicode website
FAQ which is not reflected in the Unicode Standard), and focus
on what is the technically best advice to give people about
representing the Bengali Khanda Ta, given the context explained
in the Unicode FAQ. 398

The following chapters showcase an equally contentious controversy over whose expertise should
take priority in the khanda ta debate – that of the professional Bengali linguists who enter the
chat or that of the Unicode technical experts.

Framing these seemingly petty squabbles is the enormous backdrop of centuries of techno-
linguistic power struggles, including the historical and multi-layered interests introduced in our
previous chapters: the interest of standards-makers in preserving an “efficient” technical code;
the enthusiasm of a young, emerging Bengali diaspora committed to contributing to its countries’
technical prowess; and the political agenda of government authorities taking on the complicated
mantle of language planning in the rapidly-evolving era of an expanding consumer internet. As
the case study of khanda ta that follows will demonstrate, the intertwining of these issues was
what would propel small encoding issues into high-stakes debates.

 Whistler, Kenneth, “Re: ISO 646, Unicode & The FAQ (Bengali Khanda Ta).” Email, November 21, 2002.398

118

119

Chapter 4: Accommodating Orthographic Reform

‘Many can squabble over a single letter as though the well-being of Europe
depended on it.’ So said the eighteenth-century Dutch writer Z. H. Alewijn (1742–
1788). 399

Orthographic wars are often fought letter by letter, diacritic by diacritic, taking no prisoners,
according to sociolinguist Joshua A. Fishman. In the previous chapter, I traced the historic 400

practices of language planning across the Indian subcontinent – including how the state came to
control the status and evolution of various languages, first under the British, then as an
independent nation-state. These efforts at language planning included orthographic reform,
which involves determining acceptable spellings within a given writing system. Orthographic
reform might also include defining which letters are part of a given alphabet, determining how
those letters should appear on the page, and deciding what foreign words (or “loan words”) are
permitted within a language. 401

In this chapter, I evaluate how type technology molds (or refuses) to accommodate orthographic
reforms. Before we begin to consider the “missing letter” in the following chapter, I walk through
four increasingly difficult demands that are made of the multilingual computing stack concerning
the Bangla language. To what extent do these technologies and standards serve as enabling or
limiting systems? Taking the Science and Technology Studies premise that all technologies are
political — all artifacts have politics — that “order” behavior, I consider the specific politics of the
Unicode Standard and OpenType format. As Winner wrote, the decisions to make or not make 402

something, how those decisions are made, and who is involved in those decisions all reflect the
politics of that system. 403

Bringing together the frames of orthographic reform and techno-politics, I argue that the
designers of the multilingual computing stack ultimately view themselves, and generally act in
such a way, as to be agnostic accommodators of orthographic reform. Their goals are to
understand the qualities and evolutions of a writing system, and translate them as best as they
can to the digital medium. The question these technical “translators” ask is often how, rather
than if a linguistic feature should be accommodated. At the same time, this mediating, middle
role is challenged at times by difficult, esoteric asks, as we see in the final episode presented in
this chapter of “garbage type.” This self-view becomes important to keep in mind as we progress
to the next and final chapter, where the multiple perspectives and stakes presented throughout

 Quoted in Mark Sebba, Spelling and Society: The Culture and Politics of Orthography around the World (Cambridge: Cambridge 399

University Press, 2007), https://doi.org/10.1017/CBO9780511486739., 132.

 Ibid.400

 Mark Sebba, Spelling and Society: The Culture and Politics of Orthography around the World (Cambridge: Cambridge University 401

Press, 2007), https://doi.org/10.1017/CBO9780511486739., 82-99.

 Langdon Winner, “Do Artifacts Have Politics?,” Daedalus 109, no. 1 (1980): 121–36.402

 Ibid.403

120

https://doi.org/10.1017/CBO9780511486739
https://doi.org/10.1017/CBO9780511486739

this dissertation finally converge. Where some Bengali observers see the technical mediators —
the designers of the standards — as conducting orthographic reform, the mediators themselves
view themselves as technicians, who are collecting information and documentation, and finding
the appropriate point of intervention within a complex multilingual computing stack.

In the overall chronology of khanda ta, the episodes presented here also occur at a crucial time.
It is mid-2003 and Unicode version 4 had just been released in April, including 52 new scripts
and a total of 96,000 encoded characters, nearly double the previous numbers in version 3. 404

Several of the changes proposed by the Government of India had been officially accepted.
Perhaps due to these changes, Unicode’s brand-new Indic mailing list (created after TDIL’s Vikas’s
persuasive presentation at the UTC annual meeting) remained relatively quiet during its first four
months. The quiet breaks with the introduction of a handful of new characters who are
beginning to work, now, on Bangla digitization.

“Making the Uniscribe engine work perfect for Bangla”

The silence on the Indic mailing list would break in June 2003 by a post by Rick McGowan, the
then-Vice President of the Unicode Consortium, who would share that he had recently learned of
the errata pages about khanda ta that Andy White had posted on his personal blog (as previously
discussed in Chapter 2) and was promising to look into them. 405

A few days later, Omi Azad followed up on McGowan’s post by introducing himself on the Indic
list as the person who had originally tipped off McGowan to White’s errata pages. Azad was 406

involved in many active Bangla-language computing efforts. He contributed occasionally to
Bengalinux; participated in another Bangladesh-based group called BIOS; and assisted most
actively through his efforts with a group called Altruists International, an interesting and highly
unusual group set up by Dr. Robin Upton, a UK-based “internet consultant.” 407

 The Unicode Standard, version 4.0.404

 McGowan, Rick. “[indic] Indic FAQ “errata”" Email, June 26, 2003.405

 Azad, Omi. “[indic] Langiage Processing…” Email, June 28, 2003.406

 “Altruists International,” accessed July 1, 2022, http://web.archive.org/web/20150206053738/http://www.altruists.org/about/.407

121

http://web.archive.org/web/20150206053738/http://www.altruists.org/about/

Figure 33. Snapshot of Altruists International Website (Wayback Machine)

Upton promoted an anti-capitalist, charity-oriented, and individually-motivated vision; according
to him, it was within every person’s power to perform altruistic deeds in everyday life, and
thereby improve the world. In this sense, Upton’s vision was very similar to the “free software” 408

ethic of the Western computing world (as discussed in Chapter 2). Under his guidance, Altruists
International undertook a variety of projects, including compiling an “online database of
electrical products that are no longer supported by the manufacturers” and creating a
“Bangladesh Information” website to showcase a “different side to this beautiful country” rather
than focusing only on “natural disasters such as floods, famine, or perhaps the man-made
disasters of corruption.” Upton’s interest to Bangladesh began after his first visit in 1998, when 409

he felt “moved by the huge inequality between materially rich and poor nations and [felt] called
to help in a direct way.” He was so committed to improving technological conditions there that 410

he also spearheaded a Bangla computing and localization effort called Ekushey (named after
“Ekushey February,” Martyr’s Day, an important commemoration within the Bangla Language
Movement). As part of Ekushey’s efforts, Altruists International built a plug-in for Microsoft Word
that allowed users to type in Bangla. Recall that at this time in 2003, Microsoft had only 411

released Hindi- and Tamil-language versions of its Windows systems, and had yet to release
software in other Indic languages, though their encoding standards and rendering engine were
already largely in place. Others like Bengalinux and Indic-computing were mostly working within
the open source software space, so Ekushey was one of few initiatives tinkering directly with
Microsoft products for local-language purposes.

 “Altruists International,” accessed July 1, 2022, http://web.archive.org/web/20150206053738/http://www.altruists.org/about/.408

 “Bangladesh Information Project,” http://web.archive.org/web/20150302034508/http://www.altruists.org/projects/eo/bi/.409

 “The Story of Ekushey Project - Ekushey,” accessed July 1, 2022, http://ekushey.org/?page/Story_of_Ekushey_Project.410

 Ibid.411

122

http://ekushey.org/?page/Story_of_Ekushey_Project
http://web.archive.org/web/20150206053738/http://www.altruists.org/about/
http://web.archive.org/web/20150302034508/http://www.altruists.org/projects/eo/bi/

For his part, Azad had always been passionate about the Bangla language. He lived in
Bangladesh but would stay abreast of new technological developments worldwide through online
publications. He enjoyed writing in Bangla, and would carry floppy disks with Bangla fonts
loaded onto them back and forth between home and his school, so he could be sure to be able to
type in Bangla no matter where he was. Recall that at the time, typing in Bangla required 412

proprietary fonts and programs, and the resulting document could not be reliably transferred
between computers, nor could it be easily printed. As Azad looked for better solutions, a Google
search brought him to the Ekushey project. He soon got involved in building fonts for Altruists
International, and also began interacting with other hobbyist groups dedicated to Bangla-
language computing (though many of these groups found him hard to keep track of; he had a
hand in so many projects that he seemed to be everywhere and nowhere at once).

It was through Azad’s involvement with Ekushey that Microsoft first became interested in him. 413

Specifically, he drew the attention of two program managers from Microsoft’s typography
department: Paul Nelson and Peter Constable. Nelson and Constable were both linguists-turned-
technologists that had previously worked with SIL International, an evangelical Christian non-
profit that was also a leader in language preservation. Historically, missionaries from SIL had
helped many linguistic groups document their languages through dictionaries and grammar
guides, along with developing tools – including computing tools – to facilitate the use of minority
and indigenous languages. SIL had been responsible for developing several important software
tools for text rendering, most significantly their open source rendering engine for complex
scripts, Graphite.

While previous scholars have acknowledged SIL’s critical role in the discipline of linguistics, its
equally important role in the development of language technology has largely gone
unrecognized. Among SIL’s most important contributions to local-language computing efforts 414

was providing technology companies with trained employees, who rotated through the revolving
door of SIL and industry. Paul Nelson, for instance, had been an SIL-employed Arabic linguist
working on digital fonts for that script when Microsoft recruited him into their Typography team
in the early 1990s. A few years later, Nelson pulled in Peter Constable to Microsoft’s 415

Typography team, who had been previously been working mostly on Thai. Both Nelson and 416

Constable had extensive experience, in other words, with the difficulties of typing in non-Latin
scripts – including both the technological challenges of non-standard fonts, and the cultural
challenges of getting users to adopt a keyboard utilizing a non-standard script.

 Azad, Omi, interview with author, January 30, 2022.412

 Ibid; Nelson, Paul, interview with author, March 24, 2022.413

 Lise M. Dobrin, “SIL International and the Disciplinary Culture of Linguistics: Introduction,” Language 85, no. 3 (2009): 618–19, 414

https://doi.org/10.1353/lan.0.0132.

 Nelson, interview.415

 Ibid; Constable, Peter, interview with author, February 4, 2022.416

123

https://doi.org/10.1353/lan.0.0132

Because Microsoft was a member of the Unicode Consortium, Nelson and Constable were
representatives to regular Unicode Technical Committee (UTC) meetings, where they helped
mull over encoding proposals before they were brought to the joint UTC/ISO conferences.
However, despite their industry affiliations, Nelson and Constable’s history at SIL had proven
them deeply sympathetic to the needs of minority and indigenous language users — a
perspective that is important to keep in mind over the course of the ensuing Unicode debate, in
which as hobbyists would begin associating Nelson and Constable with their corporate Microsoft
identities rather than with their underlying social commitments. Nelson and Constable had to
play a delicate intermediary role between user communities and the Unicode core staff. As
Bangla users addressed them with comments like, “let’s see what Microsoft decided for the sake
of Bangla computing :),” the Microsoft duo was forced to shoulder a heavy burden of
diplomacy. 417

Back in 2003, however, when the duo first came into contact with Azad, they were in the middle
of collecting user feedback about Microsoft’s new Bangla font, Vrinda, and the rendering engine,
Uniscribe, used to display it. As described in Chapter 1, this rendering engine was tasked with 418

several functions: first, it had to interpret the Unicode Standard and the data contained within
the OpenType font file, and then it had to perform the necessary positionings and substitutions to
display the multilingual text correctly. It was also responsible for display decisions, such as
determining appropriate places for line breaks and caret placement (i.e., the on-screen cursor in
a text file). Much of this work required them to administer user experience tests, which they
conducted both internally, using Microsoft employees who spoke the relevant languages, and
externally, by sourcing native speakers within each language community. In order to locate a 419

sufficient number of native speakers, Nelson and Constable spent meant much of their time
building relationships with local governments, as well as scouring the web for native speakers
who were already experts in the language technology space — which is what brought them to
Azad. As Nelson later recalled in an interview, “There were not a lot of people in those areas [i.e.,
technology and linguistics]- it was a small community. There was a finite set of people and you
figured out quickly who they were.” This “finite set of people” included Dr. R. K. Joshi, Apurva 420

Joshi, and other NCST employees (discussed in Chapter 2), whom Microsoft brought on board to
work on Indian fonts, especially the Devanagari OpenType and Uniscribe specification. When 421

it came to the Bangla specification, however, Microsoft found they needed to go beyond their
contacts in the West Bengal government. Omi Azad was the perfect candidate. As Azad himself
put it in his introduction to the Unicode Indic list, he had recently contracted “with Paul Nelson
of Microsoft to make the Uniscribe engine work perfect for Bangla.” But as Azad would quickly 422

 Azad, Omi, “[indic] Re: RaJophola” Email, June 21, 2004.417

 Azad, interview; Nelson, interview.418

 Nelson, interview.419

 Ibid.420

 Ibid; Shanbhag, Shrinath, interview with author, March 28, 2022.421

 Azad, Omi. “[indic] Langiage Processing…” Email, June 28, 2003.422

124

discover, making Bangla “work perfect” with Microsoft came with serious challenges, from
displaying standard letters correctly, to incorporating special characters, to making space for
character combinations yet to be invented.

Rendering Issues: Ra, Ja, and Khanda ta

One of the first issues Azad raised on the Indic list in June 2003 was an ambiguity in how two
specific Bangla letters ought to appear when typed next to each other: ja and ra. Both of these 423

letters had radically different glyph shapes associated with them depending on their orthographic
context.

Figure 34. Problem Statement From PRI-9 on Ra (Reph) and Ja (Jofola/Yaphala)

The question was, how could a user ensure the right set of glyphs would display in any given
word? Unicode had not yet provided adequate guidance on this matter; in the absence of clear
recommendations, implementers would resort to their own definitions that may be incompatible
with one another. After Azad and others raised the issue, Paul Nelson drafted a relatively new
type of Unicode-branded communication in response: the Public Review Issue, or “PRI.” PRIs
would give community members an opportunity to provide targeted feedback on whether a
proposed change should be incorporated into the Standard. In the case of ja and ra, the proposed
change would have been written into the preamble of the Bangla section of the Standard itself. 424

This preamble offered guidance to the developers responsible for implementing the standard,
such as rendering engine developers at Microsoft or independent hobbyists on the Bengalinux
listserv.

 Azad, Omi. “[indic] Langiage Processing…” Email, June 28, 2003.423

 Paul Nelson, “Bengali Script: Formation of the Reph and Use of the ZERO WIDTH JOINER and ZERO WIDTH NON-JOINER,” June 424

24, 2003.

125

A few days later, Nelson updated the initial PRI regarding ja and ra to add a section on khanda
ta. In it, he seemed to agree with Andy White’s assessment from his blog post on khanda ta a few
months earlier. In Nelson words, “The Unicode 4.0 preview makes a simplistic attempt at
addressing the Khanda Ta [issue]. The documentation indicates that the Khanda Ta is the half
form of the Ta (U+09A4).” This “simplistic attempt” at a fix had proved inadequate. As White 425

and others had already noted, treating khanda ta as a “half-form” (a kind of letter that was non-
existent in Bangla, although it was used in Devanagari) would lead to incorrect renderings, such
as vowel modifiers appearing around khanda ta instead of around the true “full consonants” they
were intended to modify. To render khanda ta properly, its full input sequence – as in the
combination of Unicode codepoints used to produce it– would need to be updated. In the case of
khanda ta, this input sequence had already taken on a rather unwieldy form. Whereas most input
sequences involved two or three codepoints, khanda ta required four, including the three control
characters – the virama, the zwj, and the zwnj. Azad forwarded one comment to the Indic listserv
from a Bangladeshi user who complained that they needed to “type four things” to get khanda ta
to render correctly. To be fair, this complaint stemmed from a misunderstanding – the user 426

didn’t need to type four different entries; only font and keyboard developers did, and then only
when they were mapping the single keystroke used to type khanda ta to the four-code input
sequence used to call up the correct encoding for it. But it was nonetheless true that this
represented a potentially tricky combination for developers to work with.

Figure 35. Issues With Khanda Ta Rendering in PRI-9

Khanda ta with incorrect placement of vowel modifier — current encoding

Khanda ta with correct placement of vowel modifier —- suggested encoding

 Paul Nelson, “Bengali Script: Formation of the Reph and Yaphala, and Use of the ZERO WIDTH JOINER and ZERO WIDTH NON-425

JOINER,” June 30, 2003.

 Azad, Omi, "[indic] Comments on Unicode” Email, July 10, 2003.426

126

From Nelson’s perspective, the problem with this four-code input sequence for producing khanda
ta was that it broke several of the logical rules of Microsoft’s rendering engine. This was 427

because the engine was designed to follow linguistic conventions (though in theory it could have
been programmed any way developers liked). Within this system, there were meanings
associated with each individual control character, and these meanings were aligned between the
various Indic scripts. Using workarounds like the one used for khanda ta meant that control
characters like zwj or zwnj no longer held a single consistent meaning for the engine to parse –
which was manageable from a technical perspective, but inelegant, and a bit troubling. Nelson
worried that if more such exceptions were added, the logic embedded in the engine would
eventually fall apart, leading to broken characters and other text display errors. Nelson hinted at
this possibility in his original PRI: “This necessity of using a ZWNJ to break the shaping should be
an indicator that the Khanda Ta should be considered for its own code point if a different half
form behavior for the Ta (U+09A4) can be defined.” Essentially, Nelson was saying: this 428

workaround may work for now. But if other kinds of ta-glyphs become needed, then it would
probably be easiest to encode khanda ta as its own codepoint than treat it as a variant of ta.

Ankur and Indic-Computing

Earlier in 2003, the bengalinux listserv (previously discussed in Chapter 2) had decided to
rename itself ‘Ankur,’ meaning “sapling,” to give itself a stronger and more distinctive sense of
identity. In the months since the release of Unicode 4.0, Ankur had been busy. Sayamindu 429

Dasgupta, an early member and the overseer of the Free Bangla Fonts subgroup, had built an
entirely new font he called Sagar (“the sea”), using glyphs donated by none other than Omi
Azad. This font was also the first to use a templating system developed by Deepayan Sarkar, 430

another of Ankur’s early members and the overseer of the Bangla Literature Archive project. 431

One of the primary goals of the Ankur group had been to standardize as much of their Unicode-
compliant, OpenType-format font design as possible, so anyone who came up with artwork for a
new font (like Azad had in this case) could “plug and play” their glyph files to create a working
Bangla font. Luckily, thanks to advances in font development tools, the group no longer needed
to rely on Microsoft’s VOLT font editor to design fonts; they could work entirely in the open
source program PfaEdit.

 Nelson, “Bengali Script: Formation of the Reph and Yaphala, and Use of the ZERO WIDTH JOINER and ZERO WIDTH NON-427

JOINER,” June 30, 2003, 6.

 Ibid.428

 Ahmed, Taneem, “[Ankur-core] bengalinux.org is now Ankur” Email, March 3, 2003.429

 Dasgupta, Sayamindu, “Subject: [Freebangfont-devel] [Announce] Sagar 0.5.0” Email, April 24, 2003.430

 Ibid; “Bengali Template Font,” accessed July 1, 2022, http://web.archive.org/web/20061230031531/http://www.stat.wisc.edu/431

~deepayan/Bengali/FreeBangTemplate/readme.html.

127

http://web.archive.org/web/20061230031531/http://www.stat.wisc.edu/~deepayan/Bengali/FreeBangTemplate/readme.html
http://web.archive.org/web/20061230031531/http://www.stat.wisc.edu/~deepayan/Bengali/FreeBangTemplate/readme.html

Ankur had also enlisted a number of volunteers to translate various Bangla text strings, with the
aim of creating a fully-Bangla Linux desktop. To attract these volunteers, Ankur members were
giving demos of their work at free software fairs across India and Bangladesh, which drew
positive attention from the press. By 2003, Ankur’s goal had become to release a localized Live 432

CD – as in a cd-rom containing a full operating system for one’s computer – by the end of the
year. This effort required a great deal of coordination and standardization across a distributed
network of local volunteers. Participants needed to collaborate on questions of vocabulary, verb
tenses, and registers (“should we ask the computer or command it?”). Within a few years’ time, 433

the group’s translation efforts would have progressed to the point that they could offer
developers standardized tools and common glossaries to help simplify the process of Bangla-
language localization. But at this point in 2003, every individual act of translation required
careful, conscientious, painstaking effort.

Perhaps most notably for our purposes, as they were working on these various efforts, Ankur
members found themselves coming across the same encoding ambiguities that Azad had already
documented with Paul Nelson. Namely, rephs and jofolas, certain glyphs for the letters ra and ja,
were not appearing correctly in the open source rendering engine that Ankur was working with,
known as Pango (which was an analog to Microsoft’s Uniscribe). In addition, the input 434

sequence for khanda ta was producing what were known as ‘illegal’ behaviors (i.e. misplaced
vowel modifiers) if it was inputted according to the erroneous Unicode Indic FAQ. 435

As Ankur worked towards putting out a fully open-source Live CD, then, its members began filing
these bug reports with Pango – much in the way Azad was simultaneously filing very bug reports
with Microsoft. Ankur’s members could see that there were widespread problems with the way
Bangla letters were rendering on popular software, but as Ankur founder Taneem Ahmed wrote,
“IMHO if uniscribe does not render [Bangla] properly then we need to let them know, not follow
them :)” By this, Taneem meant that coordination was desirable so that everyone followed the 436

same input sequences, but they should coordinate to follow the dysfunctional recommendations.
Perhaps they could be the originators of a solution that worked.

But even as Ankur members tried to come up with their own hacks for displaying rephs, jofolas,
and khanda ta properly, they quickly ran into trouble: the Pango rendering engine was not
nimble enough to handle the long series of control-character zwjs and zwnjs that were being
proposed to render these symbols. It was akin to the problem that Paul Nelson had identified 437

 E.g. Dasgupta, Sayamindu, “[Ankur-core] We are on The Telegraph, Kolkata,” Email, December 8, 2003.432

 Dasgupta, Sayamindu, “[Ankur-core] RFC - <bn>koro</bn> or <bn>kora hok</bn>” Email, July 17, 2003.433

 Sarkar, Deepayan, “Subject: Re: [Freebangfont-devel] template font” Email, April 22, 2003.434

 Sarkar, Deepayan. “Subject: Re: [Freebangfont-devel] khanda ta” Email, May 7, 2003.435

 Ahmed, Taneem. “[Freebangfont-devel] [Bug 113551] Changed - Bugs in the Bengali rendering system of Pango.” Email, June 1, 436

2003.

 “Bug 113551 – Bugs in the Bengali Rendering System of Pango.,” accessed July 1, 2022, https://bugzilla.gnome.org/437

show_bug.cgi?id=113551.

128

https://bugzilla.gnome.org/show_bug.cgi?id=113551
https://bugzilla.gnome.org/show_bug.cgi?id=113551

with respect to Uniscribe. Because the zwj and zwnj control characters were already in use across
all Indic-language complex scripts, and programmed to produce certain behaviors in those
contexts, trying to write in exceptions to those rules to accommodate Bangla’s idiosyncrasies
produced all kinds of errors.

What could Ankur do in this situation? Their only real option was to continue appealing to Pango
developers, and use their own hacks based on unauthorized/non-standard code, and
acknowledge that these might produce bugs. For these hobbyists, the realm within which they
were willing to make appeals was still the open source software space — they would either find
their own fixes or accept the bugs.

One visitor to the freebangfonts list, Mehdi Hasan, even called Ankur out for using non-standard
code sequences for khanda ta. But Ankur was unapologetic: the truth was that there was no 438

infallible way to render khanda ta at the moment. Ankur pointed towards Andy White’s proposal
as a possible solution in the works, but ultimately concluded: “you will have to accept the fact
that khanda ta hasn't been standardized.” Hasan was not pleased with this response, as he was 439

trying to incorporate Ankur’s free Bangla fonts into his open-source virtual keyboard program,
known as Avro, which had already garnered a large user base that was likely to be frustrated by
the khanda ta display errors. If the letter’s underlying encodings kept changing, or relied on non-
standard inputs, his users would not be able to interact reliably with their Avro-produced Bangla
text, including performing basic search-and-find functions. But there was not much that Ankur 440

— or anyone else — could do about the problem at the hobbyist level.

This sense of powerlessness began to change when Paul Nelson roped the Ankur membership
into participating on Unicode’s Indic mailing list. Nelson had been actively circulating PRI-9, the
problem report on Bangla text rendering issues, among those who were not yet part of the
Unicode mailing list “in hopes of being able to get some type of resolution/concensus on how
Unicode should work with the Bengali script.” Among those he approached were Ankur, who 441

decided to respond with a short comment posted to the Indic mailing list — their first
contribution to the listserv. Sayamindu Dasgupta began,

Hello to all,
I recently came across a mail by Mr Paul Nelson, where he solicited for
the comments of the Linux community on the Bengali proposal submitted by
him. We are currently working on bengali localization projects on Linux,
and I believe that some members of our community has already communicated

 Hasan, Mehdi. “Re: [Freebangfont-devel] Re: [Freebangfont-devel] FREE BanglaSoftwareAvro Keyboard - NewVersion Available” 438

Email, September 21, 2003.

 Sarkar, Deepayan. “[Freebangfont-devel] Re: +AFs-Freebangfont-devel+AF0- RE: FREEBangla Software Avro Keyboard - 439

NewVersion Available” Email, September 22, 2003.

 Hasan, Mehdi, “[Freebangfont-devel] Re: +AFs-Freebangfont-devel+AF0- RE: FREEBangla Software Avro Keyboard - NewVersion 440

Available” Email, September 22, 2003.

 Nelson, Paul, “ [indic] Re: Bengali Proposal” Email, July 3, 2003. 441

129

to Mr Nelson on this regard. However, I guess that it would be better to
summarize our comments in some public forum, and hence, I post them in
this list. 442

As we can see from this introduction, Ankur expressed timidity but was ultimately encouraged by
Nelson’s efforts, and willing to provide their input on public forums. Sayamindu went on to
report that the group approved of the sequence for ja and ra proposed in Nelson’s PRI. He also
commented on the ongoing issue with khanda ta and concluded that the proposed four-
codepoint sequence for the letter would be acceptable, as it would at least improve upon the
ambiguities of the current FAQ recommendation. White had proposed a different sequence for
khanda ta, which was in some ways more reflective of both Bangla’s grammar rules and
Unicode’s definitions for zwj and zwnj characters. But Nelson’s proposal would do as well.

Thus far, despite Microsoft’s near-monopoly position in the computer industry and opportunity to
unilaterally dictate encoding and rendering rules, the approach taken by its program managers is
one of transparency and consensus-building. In addition to reaching out to Ankur directly, Nelson
also sent a similar email to Dr. Om Vikas’s Technology Development for Indian Languages (TDIL)
team, part of India’s Ministry of Information Technology (previously discussed in Chapter 3). It
was received by Manoj Jain, the TDIL team member who had last interfaced with Unicode, who
immediately recognized the importance of Nelson’s message and forwarded it, along with the
accompanying PRI-9, to Vikas.

From: "Manoj Jain"
To:"TAMAL SEN"
Cc: "P.K Chaturvedi"; "Om Vikas"
Sent: Thursday, July 03, 2003 12:19 PM
Subject: [Indic] Bengali Proposal
> Dear Sir,
>
> Please see the forwarded mail from MR. Paul Nelson, regarding the Unicode
> for Bengali Script. Kindly send your comments to Unicode discussion forum
> with a copy to Department of IT, New Delhi. 443

Though minor, this interaction was indicative of a much broader effort toward widespread
collaboration. Throughout the course of 2003, the indic-computing community (previously
discussed in Chapter 2) continued organizing workshops and building consensus regarding the
adoption of uniform modern standards for Indic-language technology. In March 2003, the “First
National Indic-Font Workshop” took place in Bangalore, bringing together 36 participants from

 Dasgupta, Sayamindu, “[indic] On the Bengali Proposal” Email, September 10, 2003.442

 Jain, Manoj, “[Indic] Bengali Proposal” Email, July 3, 2003.443

130

across India, Nepal, and Bangladesh, including at least one subscriber to the Ankur listserv. 444

Over three days, participants discussed why Indic scripts needed to make use of the OpenType
font format and how Indic fonts could be built using open source tools, as well as developing
strategies for information-sharing after the end of the event. The workshop led to the creation of
new regional groups dedicated to continuing font development efforts within each local language
community. Thus, although none of the core Ankur members attended this workshop, they
became part of this regional community effort because conference attendees identified them as
one of Bangla’s most active local-language computing groups. 445

The indic-computing group, for its part, was progressing more slowly than Ankur, but this was in
part because it had a different aim: rather than developing working fonts, indic-computing aimed
to raise awareness about the benefits of using Unicode and OpenType in India more generally,
with the goal of building a pan-India movement for local language technology. In support of this
goal, some indic-computing members attended another workshop in the fall, the “National
Workshop on Unicode” in New Delhi, which was organized by the Ministry of Information
Technology. This workshop was important, not least because a number of prominent Unicode 446

leaders, including President Mark Davis, would be in attendance for the first time, as per the
action item at the most recent meeting of the Unicode Technical Committee. We will return to
government thread in the storyline in Chapter 5, but first, we must cover a series of new techno-
linguistic challenges cropping up on the Unicode Indic listserv in the middle of 2003.

The Ongoing “Reform and Rationalization” of the Bangla language

Before we can make sense of the next issue facing Bangla digitization, we must first review the
history of the Bangla language. Previous chapters have discussed the technological history of
Bangla typesetting (Chapters 1 and 2) and the political history of Bangla language policy
(Chapter 3); here, I discuss the linguistic history of the language itself, which will help us
understand the challenges facing digitizers in the 21st century.

Throughout the 20th century, the Bangla language and script has been undergoing continual
“reform and rationalization,” as termed by the West Bengal Language Academy. Although 447

Bangla has characteristics in common with other Indic languages, it first emerged as a language
in its own right in approximately the 11th century, when distinctive verb inflections and
pronouns such as ami and tumi (me and you) developed and the Bangla script took on
characteristics separate from Devanagari. Throughout the medieval era (12th-15th centuries), 448

 Aditya, Vijay Pratap Singh, “[Indic-computing-users] Action points First National Indic-Font Workshop, March, 2003” Email, April 444

7, 2003.

 Ibid.445

 Dutta, Abhijeet, “[Indic-computing-users] Unicode Workshop - Sept24-26, 2003, New Delhi” Email, September 9, 2003.446

 Riccardo Olocco, “Linotype Bengali and the Digital Bengali Typefaces,” MA thesis, University of Reading, 2014.447

 Hanne-Ruth Thompson, Bengali: A Comprehensive Grammar (Taylor & Francis, 2010), 10.448

131

however, the Bangla writing system was mostly used for Sanskrit. Additionally, as discussed in 449

the previous chapter, Persian words continued to be added to the Bangla language throughout
the Mughal period (16th-18th centuries), reflecting a fluidity of the language.
With the arrival of the British in the 18th century, the Bangla script went through its first major
reform thanks to the efforts of European linguists and typographers (i.e. the “orientalists”
discussed in Chapter 3). Among these was prominent British philologist, Nathaniel Brassey
Halhed, who produced the first Bangla grammar in 1778, entitled A Grammar of the Bengal
Language. 450

Figure 36. Halhed’s A Grammar of the Bengal Language (1778)

 Hanne-Ruth Thompson, Bengali: A Comprehensive Grammar (Taylor & Francis, 2010), 10..449

 Thompson, 11.450

132

Of course, the typographers responsible for typesetting such works (in this case, Englishman
Charles Wilkins and his Bengali apprentice Panchanan Karmakar), had an equally large role in
standardizing the Bangla script. Wilkins and Karmakar succeeded in producing the first-ever
wooden Bangla typeface, apparently gleaning their letterforms from medieval Bangla
manuscripts. Using wooden blocks, or “sorts,” for these letterforms meant there was no need 451

to restrict them in number, the Wilkins-Karmakar typeface included many complex conjunct
forms. Interestingly, this typeface also included some reduced forms of consonants for use in
combined forms to create conjuncts, which anticipated the typesetting strategy that would be
used in the 20th century in the case of metal line-casters. 452

The next era of reform and rationalization, known as the “Bangla Renaissance,” speaks directly to
the significance of khanda ta. The 19th century saw the rise of a rich Bangla literature, ushered
in by poets and writers such as Michael Madhusudan Dutt, Bankim Chandra Chatterji, Ishwar
Chandra Vidyasagar, and later Nobel laureate Rabindranath Tagore, all of whom composed
histories, sonnets, and translations in the Bangla language. Though these figures are often 453

credited with establishing a genuine indigenous literature on the Indian subcontinent, their
literary impact cannot be separated from the legacy of British colonialism. Because all of these
writers belonged to the privileged bhadralok (or “gentleman”) class in British India, they
benefited from the English education and acculturation efforts set forth in “Macaulay’s Minute,” a
treatise establishing the primacy of English amongst Indians (described further in Chapter 3). 454

Seeking to emulate the distinguished literary tradition of Great Britain, these educated Bengali
bhadralok worked to develop a language that would provide a suitable medium for their literary
and cultural ambitions. As Acharya writes, “The crisis [of establishing a high-status literary
tradition] was resolved by developing a Bengali language and literature which had the
sophistication of Sanskrit and the secularity of English to suit the growing new social class [of
bhadralok].” In other words, in order to make their prose as elevated as the British writing 455

style they admired, the leaders of the Bangla Renaissances introduced heavy Sanskritization into
their work. Vidyasagar and Bankim in particular worked to establish a formal literary standard
for Bangla, known as sadhu bhasha, meaning “pure” or “chaste” language — an echo of the
“purity” of Sanskrit exalted by European Orientalists. By emphasizing Sanskrit in this way, 456

Bangla authors helped elevate the status of Bangla amongst other Indic-language vernaculars,
bolstering the argument that Bangla could serve as an appropriate vehicle for knowledge. 457

 Fiona Ross, “The Evolution of the Printed Bengali Character from 1778 to 1978” (University of London, 1988), 33. 451

 Ross, 59.452

 Thompson, 11.453

 Poromesh Acharya, “Development of Modern Language Text-Books and the Social Context in 19th Century Bengal,” Economic and 454

Political Weekly 21, no. 17 (1986): 745–51, 749.

 Acharya, 749.455

 Acharya, 750.456

 Ibid.457

133

The same author, Vidyasagar, played an equally important role in standardizing the modern
Bangla alphabet. In 1855, he was tasked by the educational institutions of Bengal with writing a
primer on the Bangla language for children. The resulting work, Borno Porichoy (“Introduction to
the Alphabet”), refined the Bangla alphabet so that it consisted of 12 vowels and 40
consonants. His preface presented his justifications for these orthographic changes, which 458

included introducing three dotted characters, moving three diacritics to the list of consonants,
moving another character to the list of conjuncts, and removing two letters that Vidyasagar
argued had become obsolete. 459

Most notably for our purposes, Vidyasagar’s reformed alphabet specifically included khanda ta,
establishing it as a distinct letter of the alphabet, rather than treating it as a mere visual flourish.
Vidyasagar included standardized forms of several ligatures from the conjunct list as well, which
would later become the target of reform in the 2000s, as the Bangladesh and West Bengal
language academies sought to simplify the language. For Vidyasagar, however, conjuncts
represented an especially important part of the Bangla language, as they were essential to
writing Sanskrit words, and there was nothing Vidyasagar liked more than writing a Sanskrit-
laden Bangla.

Among these Sanskrit words introduced into the Bangla language were tatsama terms, which
had not been changed from their original or “pure” form, and tadbhava terms, which had been
adapted to Bangla phonological patterns. The rest of the Bangla lexicon was comprised of deshi
(indigenous) and bideshi (foreign) words, which entered Bangla from languages as diverse as
Persian, Arabic, English, and Portuguese. As we might imagine, the proportion of tatsama 460

words used in Bangla literature has waxed and waned over time, depending on the aesthetic
commitments of the author. By the start of the 20th century, writers such as Tagore had begun
writing in a more colloquial Bangla instead, known as cholito bhasha, or “current language,”
which they believed better reflected the language used in everyday life. Even as sadhu bhasha 461

fell out of fashion, however, a number of Sanskrit loan words persisted in the language, meaning
that the conventions for writing them in Bangla script persisted too — including the use of
Khanda ta. One element that would find contemporary echoes from this history would be the
tussle between simplifying and adding complexity to Bangla, which would affect the prevalence
of loan words in the language and of complex conjuncts and diacritics in the alphabet.

 Ross, 258-9. 458

 Ibid.459

 Thompson, 14.460

 Thompson, 16.461

134

Borno Spostikoron: “Clarifying” the Bangla Alphabet

Throughout the 20th century, the Vidyasagar alphabet continued to be what most children
learned in school. By the mid-1970s, however, some Bangladeshi institutions had begun
attempting to further reform the alphabet’s letterforms. The Bangladesh National Curriculum and
Textbook Board announced the Borno Spostikoron (“Letter Clarification”) campaign in 1990,
which called for the use of fewer ligatures and more “transparent” or “component-conjuncts.” 462

The goal, they claimed, was to aid reading comprehension.

As a Bangladeshi local, Omi Azad had grown up with the Vidyasagar alphabet — and with the
reform efforts swirling around it. When Azad began working with Microsoft, he brought up the
proposed Spostikoron reforms and advised the company to re-work their Vrinda font to support
this reformed, modern version of the Bangla alphabet. 463

Azad’s proposal caused quite a stir on Unicode’s Indic list, where the font developers and text
renderers expressed initial frustration with the prospect of a reform to address. What exactly was
this new orthographic standard? It wasn’t available anywhere online, nor did it seem to have any
official documentation. The only proof of its existence was the word-of-mouth of Bangladeshi
commenters — and this anecdotal evidence didn’t exactly suit the desire for documentation and
proceduralism among the Unicode community. As one developer posted: “I will attempt to obtain
a copy of the dictionary. Do you happen to know the full details (Author, Publisher, ISBN number,
and edition) and/or a source for the publication in Bangladesh which would accept a cerdit
card?” When no further information was forthcoming, Paul Nelson quipped, “Looks like a trip 464

to Bangladesh is required, or to trust those who are providing information from that region.” 465

This moment reflected a contrast that would recur between how knowledge was presented and
accepted between the Bangla language community and the Western developers.

Finally, one of the Indic list’s font developers resolved the debate by reverse-engineering the
changes he believed the Spostikoron reform had instituted, based on some textbook pages that
had provided by Azad, though adding the caveat, “it is difficult to be clear what in the
publications is a reflection of the rules, and what is simply a consequence of having to juggle the
200-odd available glyphs in an 8-bit font so as to construct the text.” What he meant was that 466

the non-Unicode, ASCII-based fonts that the Bangladesh government had used to print the
textbook were themselves limited in the number of available characters and the lettering may
reflect the technical constraint rather than the linguistic reform.

 Nelson, Paul, “[indic] Re: Bangla Academy and” Email, July 3, 2003.462

 Ibid.463

 Meir, Mike, “RE: Bangla Academy and “ Email, July 3, 2003.464

 Nelson, Paul, “[indic] Re: Bangladeshi Text Book Standard as it may affect the Bangla shaping engine” July 29, 2003.465

 Meir, Mike, "[indic] Bangladeshi Text Book Standard as it may affect the Bangla shaping engine” July 24, 2003. 466

135

Without any official guidelines regarding the Spostikoron reform, this is what the Indic list’s font
developer managed to glean on his own:

The reform concentrates on increasing the transparency of Bangla text.

1. ligature forms which are irregular and not immediately obvious
are suppressed

1. Irregular Ukar (VowelSignU) and Uukar and Rikar forms are
replaced with the standard base letter with standard subscripted vowel
signs

2. Antoshto Ba (indicated here by Va) is reintroduced at least as
far as being the base form of Bophola, (considered since approx 1845 to
be subscripted _Ba)

3. New ligature forms are introduced for some common irregular
ligatures. These are distinct forms which could not be constructed from
the Half-Full formulation.

4. Forms which were previously usually modified to become the top
element in ligatures (S_, Ss_, M_, N_), with the modification of the
vertical upright to a rounded form, are mainly reformulated to retain
the vertical upright, and often placed to the left of the main
consonant. (But not always in the case of Ssa, and not in an alternative
font which is also used in the documents)

5. Sa forming the first element in a conjunct drops its upright,
and is written to the left, unless it is S_Va, but not always. 467

In short, the reform un-ligated several conjuncts, splitting them into component parts that were
more clearly identifiable. Both of the examples in Figure 37 below have the same pronunciation;
Borno Spostikoron advocated for the latter representation (un-ligated) over the former (ligated).

Figure 37. Borno Spostikoron Conjunct Reforms From

Ligated kssa:

Un-ligated ka+sa:

 Meir, Mike, "[indic] Bangladeshi Text Book Standard as it may affect the Bangla shaping engine” July 24, 2003. .467

136

Now that the Indic list members had reached a tentative understanding of the Spostikoran
reform, their next difficult decision would be to choose the appropriate component of the
multilingual computing stack to handle the changes. Would all fonts need to be completely
revised so that they only included the reformed shapes? Or was it possible for a single font to
support both ligated and unligated forms? If so, what settings would the rendering engine need
to support? And if higher-level tools like rendering engines were not capable of handling
reformed Bangla script on their own, would the Unicode Standard itself need to be revised?

Further complicating the picture was the lack of universal consensus regarding the Spostikoron
reform, even within the Indian subcontinent itself. For instance, India’s Bangla language
academy, which was based in West Bengal, had not officially supported the same changes. 468

Thus, developers concluded, fonts could not be transformed wholesale so that they only
supported the Spostikoron style. The multilingual computing stack would somehow have to
accommodate both versions of the language — reformed and unreformed. One Unicode-based
solution would be to write new codepoint sequences for the modified Bangla letters, using the
zwj and zwnj control characters, which would dictate explicitly when two consonants should
ligate into the Vidyasagar style, and when they should be un-ligated in the Spostikoron style. The
drawbacks of this approach were obvious: as one commenter wrote, “this begs the question of
which [i.e., Vidyasagar or Spostikoron] should be considered the default forms, and increases the
burden on typists unnecessarily [as they would need to insert extra control characters as they
typed].” 469

These types of questions reflected the internal politics of the multilingual computing stack. As
described in Chapter 1, an inherent quality of a “technical stack” is its modularity and
boundaries, but also inescapable interdependencies. As standards-makers encountered challenges
like Borno Spostikoron, they were facing situations when the boundaries of their “technical layer”
were being refined or strengthened.

To some of the native-born Bangladeshis participating in the thread, these objections from
outsiders felt like an undeserved critique of their mother tongue. But as the Western 470

developers were quick to assert, “This concern has nothing to do with the desirability of the
reform, it has to do with the desirability of modifying one standard (the Unicode shaping rules)
to accommodate another standard (the textbook Board Standard) UNLESS THIS IS
NECESSARY.” 471

A clearer sense of the Unicode Standard, in relation to the rest of the “stack”, starts to emerge
from these repeated episodes of conflict. For many of Unicode’s adherents, the Standard had
come to serve the role of a sacred, superior technical standard, which could not be challenged

 Nelson, Paul, “ [indic] Re: Bangladeshi Text Book Standard as it may affect the Bangla shaping engine” Email, July 24, 2003.468

 Meir, Mike, "[indic] Bangladeshi Text Book Standard as it may affect the Bangla shaping engine” Email, July 24, 2003.469

 Shamsuddoha, Ranju, “[indic] Re: Bangladeshi Text Book Standard as it may affect the Bangla shaping engine” Email, July 29, 470

2003.

 Meir, Mike, “[indic] Re: Bangladeshi Text Book Standard as it may affect the Bangla shaping engine” Email, July 29, 2003.471

137

without their sense of its authority being compromised. Ironically, in many ways, the Unicode
Standard had come to seem more unchanging and conservative than any of the language
standards it was created to encode – which is especially striking given how slow language
standards themselves have historically been to change.

As Paul Nelson from Microsoft jumped in to insist, yet again:

Unicode is an encoding standard and not a linguistic standard. The use of Unicode should
reflect the use of the language and not vice versa…the important part of this topic is that the
Unicode stream *DOES NOT CHANGE* based on orthography. The Unicode character stream
remains constant. It is only the typographic rendering of the stream that may have
differences. 472

In essence, what the Indic list was really debating was the proper role of Unicode within the
multilingual computing stack: which functions should the Unicode Standard fulfill, and which
should be relegated to typographic or linguistic layers? As Nelson insisted, the design of the
Unicode Standard was never intended to take the role of shaping how language works (as in
imposing hard-and-fast rules), but nor was it intended to reflect every change in orthography at
the encoding layer. Rather, intermediate layers, such as font formats and rendering engines,
would have to accommodate orthographic changes.

Ultimately, the solution that mailing list participants (Paul Nelson, Omi Azad, and a handful of
unaffiliated font designers) hit upon was to make use of a tagging option available in the
OpenType font format. As discussed in Chapter 1, each OpenType font file included several tables
of data specifying features of the script. Two categories within these tables were labeled “script”
and “language.” For Bangla-language OpenType fonts, the script tag would specify that the font
made use of the Bangla script, whereas the language tag would specify which linguistic
conventions that font would follow — which had previously been used to specify the language in
question (e.g. Bangla, Assamese, or Manipuri), but could now be used to differentiate between
Vidyasagar and Spostikoron as well. As Paul Nelson explained, the combined use of script and
language tags “creates the definition of an orthographic system. The ability to specify the
orthography to be used will be available in future version of Windows and Office
applications.” Much like Malayalam fonts which already made use of both “traditional” and 473

“reformed” conventions, Bangla fonts could be created using “Bangla, traditional” or “Bangla,
reformed” language tags that the rendering engines would be able to parse appropriately.

In this way, the OpenType font format actually preserved the full range of orthographic
preferences within a language community, particularly in places where there was no widespread
consensus regarding how letterforms should be written — as was the case when comparing India
and Bangladesh, or even when considering practices within Bangladesh itself.

 Nelson, Paul, “[indic] Re: Bangladeshi Text Book Standard as it may affect the Bangla shaping engine” Email, July 30, 2003.472

 Ibid.473

138

Given the Unicode community’s conversations around this issue, and the eventual solution they
came up with, we can see that Unicode’s technical designers took a thoughtful, informed
approach to state-sanctioned orthographic reforms, trying hard to stay agnostic as to the
desirability of any changes. Even when one UK-based font designer allowed himself to delve into
personal opinion, he quickly dialed it back:,

I wonder if the Bangla Academy has really considered why Vidyasagar allowed the forms
they now wish to dispose of, or denigrate, while rejecting others, why they found their way
into the printed script when it would have been easier not to have had them, and why
printers and publishers using movable type preferred them when they did not have to use
them? But this is not the place to go into these matters…

With regard to standards such as those proposed by the Bangla Academy (which relate to
the appearance of complex text), or indeed that propounded by Vidyasagar, the question to
ask is: "Do the existing rules allow this to happen?" It is not "Do the existing rules make
this the only or default solution?” 474

Only a few months later, the Ankur mailing list found themselves having the same conversation.
There, Sayamindu noticed that Kolkata’s major newspaper, Anandabazaar Patrika, had just
announced a move towards transparent or component-conjuncts. Ultimately, the Ankur team 475

arrived independently at exactly the same solution that the Indic list had: using the language
tags available in the OpenType file format to differentiate between reformed and unreformed
script. Unlike the Western font developers, one of the Ankur members located in India could
easily by a physical copy of the reforms from a bookstore for eleven rupees. Nonetheless, the 476

independently-reached consensus to use OpenType to handle it suggests this decision had more
to do with the affordances each technical layer was understood to have than the Unicode
Standard’s conservatism.

By the end of August, Paul Nelson had finished up making the rounds regarding PRI-9 with all
the Bangla language stakeholders he could find. To cap his efforts, he sent another email to
Indian government officials:

I spoke with the Unicode Technical Committee yesterday. We came to an agreement that I
should seek to build concensus on how to standardize Bengali before the next UTC meeting
in late September. Being able to arrive at a concensus is critical as there is no way to
standardize implementation without people agreeing how this should be implemented.

 Meir, Mike, “RE: Bangla Academy and” Email, July 3, 2003.474

 Dasgupta, Sayamindu, “[Freebangfont-devel] Changes in the Bangla Juktakhar system” Email, January 13, 2004.475

 Mukhopadhyay, Sankarshan, “Re: [Freebangfont-devel] Changes in the Bangla Juktakhar system)” Email, February 2, 2004.476

139

I am trying to finish up the Windows update of Bengali script support. I am aware that
there is also an effort in the Linux community to have Bengali support. Because the only
contention remaining is limited to a few issues, I hope that we can have some dialog to
finally arrive at a unified approach… 477

He went on to summarize the suggestions that had been made in PRI-9 for handling jofolas and
rephs, along with presenting the four-point sequence solution for khanda ta. He also described
the OpenType language tag that would be used for handling the two different Bangla
orthographies. Despite Nelson’s claim that he “should seek to build concensus, [sic]” it seemed
that consensus was already nearly achieved. But as Nelson himself noted, there was “no way to
standardize implementation without people agreeing” — and soon a new note of contention
would throw the Indic list again into controversy.

The Double Nukta

The newest problem was literary in nature, reflecting the cultural significance of Bangla as a
mode of artistic expression. Dr. Ketaki Kushari Dyson, an acclaimed writer and translator (born in
Kolkata, India, but then residing in Oxford, England), was facing a translation problem. Dyson
frequently wrote in multilingual prose, and also frequently translated between multiple
languages using multiple scripts. In this line of work, one orthographic convention she found
particularly useful was the double nukta (a series of diacritic dots positioned below a base
letter), which could be added to a Bangla ja to soften the enunciation, changing it from the hard
“J” heard in an English word like major, to the soft “J” heard in the word measure. Semantically 478

speaking, the soft ja had no place in the Bangla language. But it was essential when
transliterating French poetry, where the first-person pronoun (je) made frequent use of the soft
“J.” In addition, within Bangla itself, the double nukta convention had appeared prominently in
the work of poet Buddhadeva Bose, who was so prolific and renowned that he was seen by many
as the successor of Rabindranath Tagore. In addition to his own original works, Bose had 479

produced translations of the French Romantic poet Charles Baudelaire into Bangla, making use
of the double nukta to capture the phonetics of the French language.

Dyson first brought this issue to the Indic list in July 2003, but it was not easily resolved. It
would resurge as an issue over and over over the coming year. At some points, the mailing list's
subscribers wondered: Was this important enough for Unicode to address? One commenter, a
Kannada speaker, seemed to doubt the significance of a single author like Baudelaire. How often
would the need for a double nukta really arise? Dyson responded with resolute literary 480

authority. It was not only the works of a single poet that required a soft ja. Common English

 Nelson, Paul, “ [indic] Re: Bengali Proposal” Email, August 28, 2003. 477

 Meir, Mike, “[indic] Double Nukta on Ja” Email, July 31, 2003.478

 Ibid.479

 Pavanaja, U. B. “[indic] Re: [Bangla] not just khanda ta” Email, June 20, 2004. 480

140

words such as ‘genre’ and ‘collage’ also required the convention, as did the name of a beloved
Shakespearean play, “Measure for Measure.” Therefore, Dyson insisted, students in Bangla-
language schools needed to have access to the double nukta in their pronunciation guides, lest
they go on to pronounce transliterated words with the traditional Bangla hard ja, “which is
horrible.” 481

In fact, Dyson’s argument here went beyond the academic context. As described in the section on
linguistic evolution presented earlier in this chapter, the Bangla language had a long history of
absorbing loan words from various languages, including Persian, Arabic, and English. One might
write the transliterated word “)* ল,” which says “school,” just as often as they might write the
Bangla word “িবদ.ালয়”, which says “bidyalay” – two words with the same meaning but
transliterated from English and Sanskrit respectively. In this sense, it was important for all Bangla
speakers, not just students, to have the appropriate characters at hand to represent foreign
pronunciations.

The presence of loan words in a language has traditionally been a target of orthographic reform.
In postcolonial states in particular, reformers often make the case that continuing to use the loan
words of the colonizer is the equivalent to continuing a form of linguistic subjugation, one that
prioritizes modernization and internationalization over local culture and communication. 482

During state-mandated script changes, then, it’s common for loan words to become a topic of
discussion. If a state were considering switching their writing system to the Latin script, for
instance, legislators might express the concern that English words would slip into the language
more easily. Even in the case of reforms not involving a script change, such as the Spostikoron 483

reform, issues of foreign pronunciation (like the soft ja presented by Dyson) frequently become
cause for concern. Should the word be pronounced using the conventions of the borrowing 484

language, or the loaning language? Should Bangla speakers learn to say “meajur” with a hard ja
or “measure” with the soft?

In some sense, Dyson and the Bangla Academy fell on opposite sides of this debate. Whereas the
Spostikoron reform sought to remove conjuncts from the language to make it as easy as possible
for native speakers to use, Dyson wanted to add additional markings to the language to expand
its capacity for phonetic expression. As she herself put it, her proposal stood in opposition to the
“simplification reforms” that had already been instituted in Bangladesh and were now looming in
West Bengal. 485

 Dyson, Ketaki Kushari, “[indic] Re: [Bangla] nuktas under ja” Email, June 22, 2004.481

 Sebba, 99.482

 Ibid.483

 Ibid.484

 Dyson, Ketaki Kushari, “[indic] Re: [Bangla] not just khanda ta” Email, June 22, 2004.485

141

Yet in another sense, Dyson’s double nutka had something in common with the Spostikoron
academy’s un-ligated forms. Both of these orthographic proposals had significant implications for
the design of the multilingual computing stack. But again, it was a question of how, not if. As
things stood, Unicode already had a nukta symbol encoded in the Devanagari block. The
question was, what should be the protocol for displaying two nuktas below a single base letter?
Should a new, standalone diacritic be added to the Standard? Or should users be tasked with
typing two nuktas after one another, perhaps adding a zwj or zwnj in between to instruct the
rendering system that the two nuktas should be paired together? If so, how should these
“combined” nuktas be shown? And what about the concern that relying on too many control
characters would lead to display errors — not to mention user frustration? As one frequent
Unicode contributor chimed in, “Oh, for heaven's sake can we please stop using all of these ZW
things as control-character fixes?” 486

Figure 38. A Mock-Up of the Preferred Double Nukta Display

Ideally, the double nukta diacritics would appear side by side under the same letter, although it
was also possible to stack them on top of one another vertically, as was the default case for
diacritics in other scripts. In German, for instance, a user could stack five umlauts atop each
other without penalty, perhaps to express a particularly emphatic “ouuu” sound. Yet Indic 487

scripts seemed to have been encoded following an entirely different logic, at least within the
logic constraints of Microsoft’s rendering engine. Nuktas needed to be associated with a single
base letter, or else they would appear with a dotted circle over them, which indicated that an
illegal sequence had been inputted.

This forced dotted circle “error” produced a great deal of controversy, even amongst designers of
the same multilingual computing stack. At least one UTC member noted that “as a casual user I
would have called [forcing dotted circles] dumb, and also fascist.” But from the perspective of 488

Microsoft employees Paul Nelson and Peter Constable, Indic text could not be rendered properly
without identifying valid “clusters” within the text. These “clusters,” which mapped roughly onto
individual syllables, were governed by rules written into Microsoft’s rendering engine, which
tried to ensure that text would appear appropriately (at least in the most common cases). The
use of “clusters” also meant that higher level software, like text-to-speech readers and other

 Everson, Michael, “[indic] Re: Double Nukta on Ja” Email, July 31, 2003.486

 McGowan, Rick, “[indic] Re: Double Nukta on Ja” Email, July 31, 2003.487

 Ibid.488

142

advanced natural language processing tools, could process Unicode sequences by interpreting a
set of consistent rules. In sum, changing the rules of the rendering engine for the relatively 489

uncommon edge case of the double nukta would upset the delicately stacked set of rules that
enabled regular Indic text to work.

Nor were the rules of the rendering engine the only justification. Nelson reported that the
company “[had] gotten feedback from *a lot* of users who have found the enforcement of
linguistic rules and dotted circle feedback helpful.” Thanks to this pushback on Microsoft’s 490

part, the double nukta issue created a seemingly unresolvable conflict between the Unicode
encoding standard and the Microsoft rendering framework used to display it: which technology
should be forced to make the necessary accommodation? In the words of the outspoken Ken
Whistler, member of the Unicode Technical committee, “this sounds suspiciously to me like the
implementation's tail wagging the standard's dog.” By this, he meant that the rendering layer 491

was driving too many of the decisions in the tussle between layers of the multilingual computing
stack. In addition to the desired adherence to Unicode’s design principles as a motivating factor,
Whistler added the warning that, if “representation and rendering” issues like the double nukta
question got turned into encoding issues on the backend, that meant going through “the process
of proposal bureaucracy and two years of tracking things for standardization before we have an
issue to the text representation issue.” His reference to the synchronized Unicode/ISO 10646 492

decision-making process added a justification for the conservative nature of the encoding layer
— this was a vast, official, multi-stakeholder process, in contrast to the flexibility and relative
independence of Microsoft and Uniscribe.

Garbage Type

Long before the double nukta issue could come to a resolution, however, the multilingual
computing community found itself facing a new “representation and rendering” concern: the
demand for “garbage type.” Omi Azad had been entirely absent from the double nukta debate;
those who attempted to reach him received only an “out of office” vacation notification:

Hello,
Your mail came to me but I have decided to take a brake from computer for a month. So I'll
not check mails till a month. So, I'll reply your mail after September. 493

 Nelson, Paul, “[indic] Re: Double Nukta on Ja” Email, July 31, 2003.489

 Nelson, Paul, “[indic] Re: Double Nukta on Ja” Email, July 31, 2003.490

 Whistler, Ken, “[indic] Re: Double Nukta on Ja” Email, July 31, 2003.491

 Whistler, Ken, “[indic] Re: Double Nukta on Ja” Email, July 31, 2003.492

 Azad, Omi, “Hello, “ Email, August 25, 2003.493

143

When he did finally break his silence, however, it was impossible to miss his dramatic
reappearance. Posting to the entire Indic list, Azad launched his complaint: “After coming back
from the brake I learn that Paul is not implimenting garbage typing.” 494

Deepayan, still unclear on Azad’s specific demands, shot back, “I have no idea what you are
talking about.” 495

But gradually his request became not only clearer, but more and more obviously warranted. As
Azad explained,

My issue was, If I can type "askludhgiweuynckvmzx" [in English] why I cannot type
anything like that in Bangla….My question is why I cannot type something like that?
Think once, if I want to make a book of wrong combinations,..then how I'll do that using
Unicode based OTF font? 496

And indeed he was right! Azad had identified a telltale limitation within Unicode/OpenType
fonts, one that denied Bangla users the full range of expression that English users took for
granted — the ability to “mash” keyboard letters to express frustration, humor, or astonishment.
This was because of the way Microsoft’s Uniscribe engine (and others that mirrored its
specifications, such as the open source analog, Pango) handled Bangla modifiers. If a user tried
to bang out “garbage type,” any time they happened to enter a solitary diacritic or a vowel
modifier then those modifiers would appear around a dotted circle taking the place of the base
letter was that expected, just as an unattached nukta would do. And there was no easy way to
remove that blatant dotted-circle error symbol. If someone wanted to include a standalone ikar
or okar for any reason — whether it be to clarify pronunciation within a textbook, or simply to
express themselves as creatively and freely as possible — the dotted circle would be imposed
upon them. One contributor raised the possibility of expressing “Baaaaaaaaah Humbug!!” in
Bangla; there was no “authorized” convention for this, but might a typist not want to input a
series of aakars, without dotted circles breaking up the expression? 497

Figure 39. Example of Garbage Type: “AAAH!!”

Could this issue with garbage type have occurred in any other medium? Of course, any new
printing technology introduces new constraints as well as new opportunities. One particularly apt
demonstration of this phenomenon comes from the development of Bangla typography in the

 Azad, Omi, “[indic] Re: On the Bengali Proposal” Email, September 15, 2003.494

 Sarkar, Deepayan, “[indic] Re: On the Bengali Proposal” Email, September 15, 2003.495

 Azad, Omi, “[indic] Re: On the Bengali Proposal” Email, September 17, 2003.496

 Meir, Mike, “[indic] Re: Bangla: [ZWJ], [VIRAMA] and CV sequences” October 9, 2003.497

144

20th century. Bangla type, like other Indic type, had undergone a number of transformations in
the days of early mass printing due to the physical constraints of hot-metal type machines. These
hot-metal linecasters had become popular in the 1930s thanks to their high-speed production of
prints, and demand for Indic-script printing quickly exploded, especially on the part of South
Asian newspapers, such as Kolkata’s Ananda Bazaar Patrika, and local university presses. The 498

linecaster had its limitations, however; the most popular model, developed by Linotype, had only
a limited number of keys that could fit on the machine. For this reason, each Indic script could
only make use of a maximum number of 90 glyphs, as opposed to the hundreds of glyphs that
had previously been used in non-metal printing foundries. 499

Thus, while the most frequently used conjuncts and letters made it onto the keyboard, everything
else had to be implemented using “half-glyphs” (discussed previously in Chapter 2). These half-
glyphs had to be squeezed together side-by-side, and often ended up looking very different from
both handwritten Bangla and previous foundry type. Half-glyphs remained in use until well into
the 1980s, when advances in type technology (such as the phototypesetter discussed in Chapter
1) would make it possible to expand the number of glyphs once more — at least, in theory. The
great irony was that the very restrictions that had once been felt as a constraint had actually
become the preference of many Bangla users in the interim. Even though Linotype was now
capable of expanding the number of glyphs to their traditional, longstanding forms, then, many
Bangla language institutions argued for a continuation of the hot-metal altered forms. What had
started as a compromise accommodation had become the preferred linguistic solution, thanks to
widespread exposure in Ananda Bazaar Patrika and other popular publications. Over the 500

decades, conjuncts typed with “half-glyphs” had become re-branded as “component-conjuncts” or
“transparent conjuncts.” These “transparent conjuncts” were exactly what were now being
promoted by the official Bangla language academies and in campaigns such as Borno Spostikoron
described above. 501

When Omi Azad raised his desire for garbage type, then, Unicode veteran Ken Whistler brought
up the above historical example as an important counterpoint. Much like the restricted Linotype
glyphs led to evolutions in preferences, Whistler argued, the restricted Unicode encodings would
lead to a new set of user behaviors. Whistler also provided an additional example that may be
more familiar to American users: that of ASCII art, or digital images produced using the 128
ASCII characters.

As Whistler insisted,

By the way, neither was it ASCII's job to prescribe usage of writing systems, nor to prevent
people from using their writing system as they saw fit. To the contrary, its very limitations

 Ross, 267. 498

 Ibid.499

 Riccardo Olocco, “Linotype Bengali and the Digital Bengali Typefaces,” MA thesis, University of Reading, 2014. 500

 Ibid.501

145

were probably responsible for the development of emoticons -- a wholly unforeseen
outburst of creativity that took writing systems off into new directions…

As I see it, we don't want to have Unicode make any aspect of conventional orthographic
representation in the various writing systems it covers impossible just by oversight or
failure of design. But it also shouldn't be viewed as a universal writing engine to mimic the
endless possibilities of handwritten form directly. On the contrary, Unicode's very
limitations will inevitably result in creations of new forms in the future--in ways we won't
anticipate until somebody dreams them up. 502

I share this series of Bangla digitization trials brought forth to the Unicode Indic listserv to
highlight two points. Firstly, these episodes highlight the tussles occurring internally amongst
overseers of the technical layers of the multilingual computing stack — namely, the Unicode
Technical Committee authorities responsible for the Unicode Standard, and the Microsoft
employees responsible for OpenType implementations in the text rendering layer. User interests
— whether it be requests for the proper representation of ja and ra glyphs, to compliance with
new letterform reforms, to adding flexibility for loan words, to permitting an unbounded range
of typographic innovation — must fall somewhere between them. We see where the limits to user
requests are drawn: though Spostikoron reforms and new diacritics can be accommodated,
“garbage type” seems like it will fall outside of the entire stack’s purview. For the most part,
however, orthographic reforms are largely heard and responded to by the technical mediators on
the Unicode mailing lists.

These episodes also lay important context for the upcoming khanda ta debate because they
established a sense of confrontation occurring between the Bangla user community and the
professional standards-makers on the Indic list. Genuine representation issues such as ja, ra, and
khanda ta were getting lost among esoteric requests for double nuktas and garbage type. When
the issue of khanda ta would erupt in the same forum in the coming months, the standards-
makers would have to determine where it fell on the spectrum of importance: what authority lay
behind the requests, how important was it to act, and, of course, which layer of the technical
stack was best poised to handle it?

 ___ ___ T__
 ________ | |~~~~~~~~| ||~~~~| |||
 __|~~~~~~~~| _/_ |^^^^^^| _| |--------| || | |##
 |_|HHHHHHHH| _|--| |------|_-#########################

Figure 40. ASCII Art of Fortress

 Whistler, Kenneth, “[indic] Re: more than one maatraa on a consonant” Email, October 13, 2003.502

146

Chapter 5: The Battle over Khanda ta

Previous chapters have introduced us to the various stakeholders in the khanda ta debate.
Chapter 1 laid out the origins of the Unicode Standard, a sociotechnical system designed with
Western and East Asian scripts in mind, relegating the display of Indic scripts like Bangla to yet-
to-be invented technologies. The overseers of this system, the Unicode Technical Committee
(UTC), valued consistency, procedure, and efficiency. Chapter 2 introduced us to the social actors
who inherited this system — local language hobbyist groups who had access to these open
standards and their own faculties to build open source tools that could enable the Bangla
language community to live online. They were solutions-oriented, independent-minded, and
loyal to their nations. In Chapter 3, we saw the rise of government agencies, namely India’s
Ministry of Information Technology, that took on the mantle of language planners in the digital
age. For them, language digitization was a matter of national pride and progress; their tactics
were a blend of the analog and digital — paid memberships to join cutting edge industry
consortia, but a preference for slow hand-posted communications over fast online forums.
Finally, in Chapter 4 we began to see the internal workings of the multilingual computing stack,
as they grappled with a burst of user requests. We saw the relative flexibility and swiftness of the
text rendering layer, and its designers (Microsoft typography program staff), in comparison to the
encoding layer and its overseers (the UTC).

Now, we are ready to appreciate how these multiple interest groups come to intersect around a
single high-stakes battle: one decision, in one script, over one letter. This case represents
something different to each party: an edge case, a bug, a letter dropped from the alphabet.
As arguments come to a head, a new stakeholder group also enters the discussion: academic
linguists, who typically stand at the forefront of any orthographic war, but had been missing from
Unicode discussions until this point. We see how the introduction of the linguist’s perspective
transforms the discussion over khanda ta into an inflamed debate, providing an opportunity for
the between each group mentioned above to come to the fore and attempt resolution. In the end
we are able to see how language digitization is idiosyncratic and all-encompassing at once, both
mundane and stunning.

—-

In the August of 2003, just before Omi Azad’s “garbage type” outburst, the Unicode Technical
Committee (UTC) met to address outstanding issues like PRI-9. Although the committee did 503

manage to finalize the encoding rules for ra and ja at these meetings, they did nothing to address
PRI-9’s section on khanda ta, for reasons that remain unclear.

In response to this curious silence, Andy White submitted a draft proposal to Unicode in
September that contained the same explanation of khanda ta as his earlier blog post. Unicode, 504

 Moore, Lisa. “UTC#96 Minutes,” UTC Document Registry, L2/03-240.503

 White, Andy, “[indic] Request to revise the current model for encoding Bengali Khanda-Ta” Email, September 21, 2003.504

147

White reminded the committee, was currently treating khanda ta as if it behaved in the same
manner as Devanagari’s half-forms, but this mistaken approach was causing a number of display
problems for Bangla users. This was because Bangla traditionally did not contain anything like
half-forms; the only Bangla forms that bore a passing resemblance to half-forms were, in fact, the
linecaster imposed corruptions, half-glyphs, that appeared briefly in the 20th century. For this
reason, treating Bangla like Devanagari would cause rendering problems, including vowel
modifiers appearing in the wrong places, i.e. around khanda ta.

White, acknowledged Paul Nelson’s four-code proposal for inserting khanda ta, but insisted that
Nelson’s solution was “only a partial workaround.” This was because, as White laid out, 505

Nelson’s encoding rule would produce additional errors, as there were too many possibilities for
how the base letter ta might appear in a font, making it impossible to determine which glyph
might be preferred by the user in advance. Finally, White pointed out, although Bangla did not
contain true half-forms as distinct semantic units, it did sometimes make use of half-glyphs within
a certain font to form “component-conjuncts” in the style of the hot-metal Linotype (and
subsequent Spostikoron reforms) discussed above. This was the exact case that Paul Nelson had
warned would cause his suggested rule to falter. Despite these objections, however, White was
not yet advocating for khanda ta to be encoded as a unique character in Unicode. He was only
advising that Unicode opt for a different sequence of codepoints to produce khanda ta than
Nelson’s proposed solution – namely, to insert khanda ta by entering it as the halant-form of ta,
as the latest versions of ISCII were now doing. 506

With each new message, the hobbyists grew more and more confused as to why Unicode was not
responding to their comments about khanda ta. After White submitted his proposal to the Indic
list, Azad responded, “Dear Andy, We have talked on issues like this many times ago. But I don’t
think someone really care about these. So… Keep trying.” To this, White replied, “Try Try and 507

Try again. I was having deja-vu when writing the document.” Indeed, the readers of this 508

dissertation have heard this argument from some of its earliest pages; White’s argument has been
cooking since Chapter 2 (or November 2002 in the historical timeline).

Meanwhile, over at Ankur, Sayamindu and Deepayan were wondering why their joint comment
on khanda ta had received so little response on the Indic mailing list, despite having been
actively solicited by Paul Nelson to begin with.

Now that you mention it, there seems to have been no reaction to Sayamindu's
prior post to the indic@unicode list. Maybe we should submit that more

 White, Andy. “A Request to revise the current model for encoding Bengali Khanda-Ta” http://web.archive.org/web/505

20040923213157/http://www.exnet.btinternet.co.uk/uniprop/KhandaTaEncode.pdf , 2.

 Ibid.506

 Azad, Omi. “[indic] Re: Request to revise the current model for encoding Bengali Khanda-Ta” Email, September 21, 2003.507

 White, Andy, “[indic] Request to revise the current model for encoding Bengali Khanda-Ta” Email, September 21, 2003.508

148

http://web.archive.org/web/20040923213157/http://www.exnet.btinternet.co.uk/uniprop/KhandaTaEncode.pdf
http://web.archive.org/web/20040923213157/http://www.exnet.btinternet.co.uk/uniprop/KhandaTaEncode.pdf

formally, and hope to get better results this time. 509

Even as they debated the best course of action to get an actual response, the Ankur members still
claimed to be agnostic on the issue at hand: “I think there's nothing for us to do really, since we
are happy with the way things currently are…” Yet Sayamindu and Deepayan’s joint statement 510

did take a stance. It acknowledged that there was a serious problem with khanda ta, and stated a
preference for White’s proposal as well (since they, like White himself, had found Nelson’s
proposal to be too error-prone to be workable).

But perhaps Sayamindu and Deepayan were simply trying to draw a distinction between
themselves and the government officials from India’s Ministry of Information Technology, who
were becoming increasingly forceful and aggressive in their recommendations. The Ministry had
just hosted a “National Workshop on Unicode” in New Delhi in March 2003, which was attended
by a handful of Unicode core staff, including President Mark Davis, who gave the keynote
address. Davis’s keynote showed that the Unicode consortium was trying to fulfill the promises it
had made earlier in 2003, when it first began interfacing more actively with the Indian
government’s TDIL through in-person site visits, as well as collaboration on the Indic mailing list.

This “National Workshop on Unicode” included several presentations by representatives of
different language communities, each of whom brought forth their own linguistic issues with
respect to Unicode. One of the Ankur members residing in India, Indranil Dasgupta, attended the
workshop and reported back:

It seems that TDIL (DIT/GoI) is once again poised to push forward another
Bangla proposal to Unicode Consortium asking for allocation of code-points to
khanda-taa, reph, ja-phala et al. (as evident from a presentation by Dr B B
Choudhuri/ISI, Kolkata) 511

In fact, TDIL was planning to write proposals not only for Bangla, but for India’s other major
language communities as well — a strategy that was not at all clear would prove practical or
effective. After all, although the Unicode Consortium seemed to be keen on building diplomatic
relationships with India, it did not appear eager to grant the country’s wishes. Indranil
Dasgupta’s email ended with the cautionary note that Unicode representatives encouraged
anyone wishing to make changes to the Standard to write organized, well-reasoned proposals
following the prescribed format. A careful, considered approach seemed like the best strategy for
all involved; otherwise, requests risked getting denied before they got a proper hearing. As
another Workshop attendee, V.S. Umamaheswaran (“Uma”), warned on the Ankur mailing list:

 Sarkar, Deepayan. “[Freebangfont-devel] Re: [Ankur-core] RE: Update on NationalUnicode Workshop & 509

Bengali Proposal on Indic m/l” Email, October 11, 2003.

 Sarkar, Deepayan. “ Re: [Ankur-core] RE: Update on NationalUnicode Workshop & Bengali Proposal on Indic m/l” Email, October 510

8, 2003.

 Dasgupta, Indranil. “[Ankur-core] Update on National Unicode Workshop & Bengali Proposal on Indic m/l” Email, October 4, 511

2003.

149

Before any proposal is made .. please do go through the steps I outlined
in my presentation at the workshop .. on 'do your homework' .. especially
the checking and ensuring that sequences described in Unicode V4.0 Ch 9 /
FAQ / UTNs .. are indeed 'not adequate' for representing the characters
you have mentioned.

Even though presentations were made in earlier TDIL documents and at the
workshop - such as by Prof Chowdhury, my impression is not that the
workshop has opened up any path for new proposals on the characters you
have mentioned. I am of the impression that sequences given for these are
adequate for encoding them. 512

Uma’s “do your homework” presentation on the proper way to submit proposals suggested that
unreasonable, unwarranted requests had been slipping in from TDIL officials who were not
sufficiently familiar with Unicode’s design principles and encoding logic. In this context, Ankur
wanted to position itself as a more informed, reasonable, and experienced group than TDIL.
Ankur may not have had a strong stance on the question of a new encoding one way or another,
but they wanted to make it abundantly clear that they understood the technical constraints, and
that there was indeed an issue.

Introducing Gautam Sengupta

Indeed, it was so clear that there was still a problem that the issue soon escalated from the
hobbyist into the academic realm. In December 2003, Peter Constable, the Typography program
manager who had been working with Paul Nelson at Microsoft, attended a conference in Tokyo
where he met Kolkata linguist Dr. Gautam Sengupta. The conference was called the 513

“International Symposium on Indic Scripts: Past and Future,” and had been organized by the
Research Institute for Languages and Cultures of Asia and Africa, which was located within
Tokyo University. The conference itself was unremarkable – just another casual stop on an
academic’s annual conference circuit – but in retrospect, it marked the point when Sengupta took
on the mantle of championing khanda ta’s importance to the world.

Sengupta’s conference paper emphasized the similarities between the Bangla letters khanda ta
(ৎ) and anusvara (◌ং). According to Sengupta, both of these letters were “silenced” 514

consonants; khanda ta was the Bangla consonant ta (ত) with a silenced inherent vowel, making
it analogous in sound to the Latin letter ‘t’. Anusvara was the Bangla consonant nga (ঙ) with a
silenced inherent vowel, giving it the ‘ng’ sound, as in the middle of the word “Bangla.” Khanda

 Umamaheswaran, Uma, “[Ankur-core] Update on National Unicode Workshop & Bengali Proposal on Indic m/l” Email, October 6, 512

2003.

 Sengupta, Gautam, interview with author, October 20, 2021.513

“International Symposium on Indic Scripts : Past and Future  : Organized by Research Institute for Languages and Cultures of Asia 514

and Africa Tokyo University of Foreign Studies Tokyo, December 17-19, 2003  : Working Papers,” 東京外国語⼤学附属図書館ＯＰＡＣ,
accessed June 29, 2022, https://www-lib.tufs.ac.jp/opac/recordID/catalog.bib/BB13653529.

150

https://www-lib.tufs.ac.jp/opac/recordID/catalog.bib/BB13653529

ta and anusvara had different linguistic genealogies, yet served a similar function in the present-
day Bangla alphabet. This parallel made it all the more striking that anusvara had its own
codepoint in Unicode — and khanda ta still did not.

With his carefully researched and professionally presented paper, Gautam Sengupta became the
first person to officially begin advocating for a unique codepoint for khanda ta within Unicode.
This marked a significant shift. Up until this point, there had only been requests for minor
revisions to the way khanda ta was rendered, making khanda ta an ambiguous issue because it
lay between Unicode’s soft laws (i.e. the Indic FAQ page or the preamble of the Standard) and
Microsoft’s rendering engine rules. As long as khanda ta was presumed to be some graphical
variant of ta, as previous listserv comments and even Andy White had treated it, developers
assumed that whatever rendering issues it had could be handled at these layers. When Sengupta
began proclaiming that khanda ta had significant linguistic status of its own, however, he
asserted that khanda ta would need to be handled at the critical base layer instead: the Unicode
Standard.

Just who was this professor to make such a bold claim? Sengupta would hold a unique position
in the Unicode milieu. As Azad recalled in a later interview, “We used Bangla but we did not
study it in school…. Gautam-da explained really well to us, he wrote papers, he explained the 515

grammar.” It could hardly come as a surprise that Sengupta explained so well, given that he 516

was well-versed in both linguistics and technical systems. He had earned his PhD in Philosophy
at the University of Massachusetts-Amherst, where he had studied formal linguistics. While there,
he had worked as a research assistant for renowned Electrical and Computer Engineering
Professor Bill Kilmer, and had developed an aptitude for formal logic and programming that he
deeply enjoyed. By 2003, he had returned to India to become a professor of applied linguistics at
the University of Hyderabad. 517

Sengupta’s foray into Unicode only came about as the result of a side project, which involved
digitizing ancient Sanskrit texts. As part of the digitization process, Sengupta began 518

investigating encoding schemes and keyboard systems, including ISCII, Unicode, and Keyman (a
make-your-own open source keyboard tool adopted by SIL). While Sengupta appreciated ISCII’s
cleverness, he recognized its code range (only 8 bits) was too small to be practical for
multilingual documents. ISCII also produced numerous errors, in part because - as Sengupta
knew quite well - its inventors were versed primarily in Devanagari. “Maybe they didn’t even
notice khanda ta,” he would later muse. Thus, even as Sengupta tried his best to make ISCII 519

and its associated INSCRIPT keyboard do what they were designed to do – i.e. allow easy touch-

 “-da” or “-di” are Bengali honorifics to mark respect for elders515

 Azad, Omi, interview with author, January 30, 2022. 516

 Sengupta, interview.517

 Ibid.518

 Ibid.519

151

typing and translation between Indic scripts – his efforts proved so error-prone that any
advantages gained were slim.

For these reasons, Sengupta soon moved on from ISCII to Unicode, and was immediately struck
by how beautiful and expansive the Standard seemed in comparison. Much like Unicode’s own
founders, Sengupta intuitively understood the need for a single, unified, all-encompassing
multilingual standard – one that overcame the limitations of the national and proprietary
standards and switch codes of the 1980s (discussed previously in Chapter 1). Yet as much as 520

Sengupta admired Unicode, he noticed errors in it as well: extraneous or nonsensical characters
that were encoded in the Indic block, as well as valid characters that were completely absent.
When Sengupta had been working in ISCII, he had found himself wishing that more linguistic
experts had been involved in its original design, as opposed to only computer engineers. When
he began working with Unicode instead, he found himself wishing that South Asian governments
had been able to offer more initial input on the Standard, as opposed to Western technology
companies simply incorporating ISCII as-is without questioning its limitations. 521

Because of these historical contingencies, for Sengupta, the khanda ta debacle - which he would
spearhead for the next six months - represented more than a single, hard-to-type letter. It was
paradigmatic of the failure of Western computing as a whole to take into account the specific
techno-linguistic needs of language communities throughout the Global South. As such, it
represented a crisis, or perhaps an opportunity, to reassert the quintessential importance of
linguistic expertise in multilingual computing, even when it came to the design of a so-called
purely “technical code.” The cascading series of failures that engendered the khanda ta crisis
demonstrated, more clearly than ever before, that South Asian perspectives must be heard and
accommodated in the global computing world. For Sengupta, however credentialed the Microsoft
program managers might be, they still represented the narrow-minded and self-interested
American corporate agenda. In sum, when Sengupta entered the debate, he elevated the
discussion from a single “missing” letter to a standoff between industry and academia, between
the Global North and the Global South.

Re-Introducing Peter Constable

Soon after hearing Gautam Sengupta’s presentation on the full linguistic implications of khanda
ta in December of 2003, Peter Constable, Microsoft’s head of typography, began posting in the
Indic mailing list in late January of 2004 with questions about khanda ta’s linguistic behavior:
“do vowel signs ever go around it?” By this point, Constable had taken over from Paul Nelson 522

as the Microsoft employee tasked with handling Bangla-related issues, and Constable was
dutifully working on getting up to speed. In response to Constable’s query, Deepayan Sarkar

 Sengupta, interview.520

 Ibid.521

 Constable, Peter. “[indic] Bengali khanda ta behaviours.” Email, January 29, 2004.522

152

answered promptly (“No”) and added that the Unicode FAQ was still wrong – it listed khanda ta
as a half-form of ta, when it should be described as the halant-form. 523

This seemingly straightforward conversation quickly became inflamed when Omi Azad jumped
in. A firebrand as always, Azad was unafraid to call out Microsoft for its long-delayed khanda ta
response — and to make a few of his own demands as well:

Hello Peter,

Thanks to God that someone from Microsoft again return with Bangla Issue. Last time I
was working with Paul Nelson for Bangla issues and I also gave a hand to Vrinda. Paul
modified the Uniscribe engine as per our request and after that he told me that his
responsibility has changed and he cannot do anything for Bangla. I was also testing the
BETA of the Uniscribe engine and Vrinda font by signing an agreement with Microsoft.

Well, we had too many demands from Unicode and Microsoft. Unicode is not listening to
India and Bangladesh for Bangla issues and it’s true that we don’t have much proof to
make our demands stronger.

I agree with Deepayan’s reply to you regarding Bangla questions you made to him. But I
want to point you to something else. We want garbage typing. I mean I can type whatever
I want in Bangla. I don’t know why other Indic languages did not demand for this
solution, but we really need this.

KhandaTo is a form of Ta+Halanth, but we also need the Ta + Halanth + consonant = Ta
with postbase form of consonant. To give the solution, Paul made Ta+Halanth+ZWNJ,
but the problem went to another fault. After that if I put another consonant and anther
vowel sign, the vowel sign goes before the KhandaTa. To give a temporary solution, Paul
suggested to put another ZWN after it, I mean Ta+Halanth+ZWNJ+ZWJ then the
KhandaTa will not eat the vowel sign. But the whole concept went garbage to me.

Bangla is Bangla and it has nothing to do with other Indic languages. Last time Paul said
that the garbage typing issue is causing problem to other languages in the uniscribe
engine. But I cannot make myself understand that why that is so! Cause, it’s Bangla and
your engine should work as Bangla users will demand. 524

Azad’s striking message bears close examination. After reintroducing himself to Constable
(explaining that his previous work had been with Paul Nelson), Azad expressed a palpable
feeling of frustration, complaining that the repeated requests of Bangla users were still not being
heard because “Unicode is not listening” to its South Asian constituents. Azad wasn’t wrong-- at

 Sarkar, Deepayan, “[indic] Re: Bengali khanda ta behaviours” Email, January 29, 2004.523

 Azad, Muhammad Shariqul Islam, “[indic] All Bengali behaviours (not only khanda ta)” Email, January 30, 2004.524

153

the last two UTC meetings, the khanda ta issue had not appeared even once in the meeting
minutes, despite over a year of ongoing appeals. Perhaps predictably, Azad also insisted, yet
again, “We want garbage typing.” By this, he meant something more significant than the ability
to produce random keyboard-mashed letters like “fnsawlnfl.” To Azad, the freedom to “type
whatever I want” included an end to the “fascism” of dotted-circle error messages that limited
users by telling them that their letter combination was illegal. It also included the ability to
display any combination of Bangla glyphs – which would enable users to show the many
different ways conjuncts had been drawn across the history of the Bangla script, not just the most
common conjunct conventions of the contemporary era.

Azad’s demands went beyond the realm of font design; they demanded changes to the
underlying rendering engine that also had to support his desired conjunct combinations. This is
why we found Azad insisting that Microsoft’s “engine should work as Bangla users will demand”:
the complexity of displaying Bangla script properly was Microsoft’s problem, and, depending on
Microsoft’s limitations, it might be Unicode’s problem as well.

Azad’s final point would come to symbolize much of the overarching sociopolitical stakes
associated with khanda ta. As Azad insisted, khanda ta was a feature of Bangla and Bangla alone.
Yet Western developers, unfamiliar with the linguistic intricacies of the language, had been
resting on the comfortable assumption that all Indic languages could be treated the same way. If
Microsoft’s so-called “Indic engine,” or Unicode’s original ISCII-based Indic encodings, could not
support the display requirements of khanda ta, that risked sending the message that Bangla
users’ needs were peripheral.

In short, the problem could be summed up as follows: to render properly within the existing
constraints of multilingual computing stack, Bangla’s unique features had to fall in line with
other Indic scripts. But as Azad insisted, “Bangla is Bangla and it has nothing to do with other
Indic languages.”

Not yet posting directly to the Indic list, Gautam Sengupta weighed in on Omi’s proclamations in
a personal email to him. Despite having more academic training than Omi Azad, Sengupta
heartily endorsed his conclusions:

I agree with you completely on this issue. Unicode is indeed giving the impression, perhaps
inadvertently, that the opinion of Bengalis, even those who are well aware of the issues
involved in script encoding, need not be taken seriously; and getting away with it simply
because most Bangla speakers either in Bangladesh or in India - even those involved in
language empowerment movements - are not even aware of the existence of the
Consortium or its activities. 525

Sengupta’s tone may have been far more diplomatic than Azad’s, but he was still accusing
Unicode of “giving the impression,” however “inadvertently,” that Bangla users “need not be
taken seriously,” which had not yet been directly articulated by the software hobbyists nor

 Sengupta, Gautam, “Re: [Fwd: [indic] Re: All Bengali behaviours (not only khanda ta)]” Email, January 31, 2004.525

154

government officials. Whether it was with Sengupta had given his blessing is unclear, but soon
after receiving his message, Azad had quickly forwarded it on to the entire Indic list.

Here Peter Constable began to take on Sengupta’s accusations against him. He claimed that the
problem was purely a matter on process:

That's not the case. If Bengalis have not had their opinions taken into consideration, it is
only because those opinions were not communicated adequately. 526

This defensive response revealed ignorance towards the technological frustrations that Bengalis
had repeatedly expressed. As each chapter of this dissertation has shown, individuals from
various stakeholder groups had already been identifying errors and recommending changes for
over two years by this point. Yet to Constable, these users’ objections were still “not
communicated adequately” — an unnecessarily dismissive response that set a confrontational
tone for the rest of the ensuing debate.

When Ankur’s Deepayan responded to Constable, he clearly registered Constable’s defensiveness
— and responded in kind with a sarcastic apology: “Perhaps it’s our fault for not being militant
enough. Maybe we don’t know the procedures well enough.” At this point, Rick McGowan, 527

insisting that he was writing as a long-timer observer and was “NOT SPEAKING OFFICIALLY”,
tried to calm everybody down by chiming in to say that “militancy” was not necessary, but that
the UTC would of course like to hear from everyone. According to McGowan, Unicode’s 528

leadership had been under the (false) impression that all of the problems with Bangla had
already been solved.

To Constable’s point, in fairness, most of the requests that had brought to Unicode had taken the
form of personal blog posts and messages on public mailing lists. Even the communications
coming from official Government of India channels never had much impact because they had
never mustered up technical justifications. The formal proposals and technical justifications had
not yet aligned and brought to Unicode’s attention.

To this end, Gautam Sengupta had recently submitted an official proposal to Unicode on
February 1, 2004 requesting a change to the encoding for khanda ta. Sengupta provided the 529

same linguistic explanation as Andy White about how khanda ta should be considered the default
form of a ta with a virama, and thus should be encoded simply as ta+virama. Control characters
like zwj and zwnj could be used for less commonly used variations. Though his Tokyo paper had
noted the inconsistency of giving anusvar its own “atomic” codepoint in Unicode, but not khanda
ta, he refrained from making that argument here.

 Constable, Peter, “[indic] Re: [Fwd: Re: All Bengali behaviours (not only khanda ta)]]” Email, February 2, 2004.526

 Sarkar, Deepayan, “[indic] Re: ENCODING BANGLA KHANDA-TA WITH TA+VIRAMA” Email, February 3, 2004.527

 McGowan, Rick, “[indic] Re: ENCODING BANGLA KHANDA-TA WITH TA+VIRAMA” Email, February 3, 2004.528

 Sengupta, Gautam, “Encoding Bangla Khanda-Ta With Ta+Virama” UTC Document Registry, L2/04-060.529

155

In response, Paul Nelson expressed frustration, arguing that he had come up with a longer four-
codepoint sequence precisely because it seemed like the only way to accommodate Azad’s desire
for garbage type. He claimed that it was unclear that Sengupta’s proposal would permit all the 530

variations of ta to appear in text, while still allowing developers to program correct linguistic
behavior for these variations (such as indicating where vowel signs should be displayed within
the rules of their rendering engine). As Nelson insisted,

Frankly, it is really tough to build software to support the Bengali script because opinions
keep changing, or little bits of information leak out hear and little bits leak out there. One
person wants to define rules for specific cases and another want to type garbage. We end
up with non-Bengali speaking "experts" putting together contributions to tell the world
how the Bengali script works and the Bengali speaking group complaining that the
implementation is broken. 531

Despite Nelson’s clear annoyance that “opinions keep changing” and users keep “complaining,”
this moment actually marked a significant progression in his perspective. His opinion had
actually shifted in repeated advocacy around this issue. The easiest and most sensible thing to do
now, Nelson opined, would be to encode khanda ta as a standalone codepoint in the Unicode
Standard. The letter should be recognized as an independent character because that’s how it 532

functioned in the language.

As new commenters jumped in and the discussion began to spin out of hand, Constable began
reconstructing the entire timeline for khanda ta to establish a clear record, beginning with the
Bangladeshi Standards Institute’s request to ISO in 2000 to do something about the letter, and
continuing with the questions about khanda ta on the Indic list in spring 2002 that led to Apurva
Joshi’s error-ridden re-write of the Indic FAQ, followed by Andy White’s blog posts from a few
months later chronicling said errors. Constable also included Paul Nelson’s recent PRI-9 error
report, which contained important information about khanda ta in addition to ra and ja. Finally,
Constable concluded with the revived conversation about khanda ta that was taking place at the
present moment, including Gautam Sengupta’s proposal for changing the letter’s encoding within
Unicode. 533

Constable expanded upon his newly assembled digital archive with caveats, such as: “UTC did
not at any time make any specific decisions regarding khanda ta (they did on reph/ya-phalaa
[the buggy ra and ja glyphs], but not this),” which implied that users should not point their
fingers at Unicode for failing to handle the issue before an actual decision was made. Constable
also clarified that Joshi’s faulty FAQ response had only become institutionalized in Version 4 of

 Nelson, Paul, “[indic] Re: ENCODING BANGLA KHANDA-TA WITH TA+VIRAMA” Email, February 3, 2004.530

 Ibid.531

 Ibid.532

 Constable, Peter, “[indic] Re: ENCODING BANGLA KHANDA-TA WITH TA+VIRAMA” Email, February 3, 2004.533

156

the Unicode Standard manual because another UTC representative had copied it in without
knowing better. That same representative was now reportedly trying to retract this contribution,
admitting that he “had no knowledge of [khanda ta’s] behaviors and that, had he known about
them, he probably would have been trying to get a separate khanda ta character encoded.” 534

But the damage had already been done. A number of Bangla users had started complaining on
the Indic list that they felt Unicode had been arrogant and dismissive of their concerns. Gautam
Sengupta empathized, writing to them:

You will have to learn to live with ridicule that
results from the deadly combination of ignorance and
arrogance for the sake of your language and script,
with the hope that in the end something positive will
emerge out of all this. Remember that people in
Bangladesh had to bear more than just insults and
ridicule - they gave their lives and even went to war
for their language. I understand exactly how you feel
and have been through the same experience myself. 535

By calling the conflict “deadly” and comparing it to “war,” Sengupta was evoking the hefty
language politics of the Indian subcontinent from the past century. The “ignorance and
arrogance” he identifies on the part of western developers spoke to the discomfort that many
observers had expressed towards Unicode’s assemblage of Western technology leaders at its
founding, in contrast to ISO’s treaty-bound array of governments. Nor did his heated rhetoric go
unheard. Given the increasingly contentious discussion that had been ramping up, the UTC
decided at their next meeting in early February that they had no choice but to address khanda ta
directly. The committee tasked Peter Constable with drafting a new PRI and inviting members 536

of the Indic list to respond. In this way, they hoped to finally achieve a solution.

If the UTC hoped to tamp down the roiling controversy, they were sorely mistaken. In the days
immediately following the UTC’s February meeting, the Indic list quickly became overwhelmed
with comments and questions about khanda ta. Constable responded directly to Gautam
Sengupta’s proposal, insisting that the ta+virama combination would still cause problems for the
rendering engine. This was because, he argued, one of the tasks of a rendering engine was to
identify “clusters” – units such as letters or syllables that could be composed of multiple Unicode
codepoints, but needed to be treated as as a single unit for operations such as word-searching,
line-breaking, and caret placement. The “cluster” approach meant that the processing issues
involved in rendering khanda ta appropriately were significant, he said. But, “khanda ta has

 Constable, Peter, “[indic] Re: ENCODING BANGLA KHANDA-TA WITH TA+VIRAMA” Email, February 3, 2004.534

 Sengupta, Gautam, “[indic] Re: Khanda Ta” Email, February 3, 2004.535

 Moore, Lisa, “UTC #98 Minutes,” UTC Document Registry, L2/04-003.536

157

exceptional behavior and requires exceptional handling no matter what.” It was just a matter 537

of figuring out what form of “exceptional handling” would be the least troublesome for
developers.

Sengupta, meanwhile, was feeling frustrated with the role the UTC seemed to be taking on of
orthographic reformers — the position we had seen the intermediaries so delicately steer clear of
in the previous chapter. He wrote,

The fact that it is a distinct character in the Bangla script should be reason enough. It is NOT
the business of the UC to analyze scripts in order to decide whether a certain character could
be dispensed with. It has neither the competence nor the mandate to do so. That is the
business of professional linguists researching the concerned language or script. 538

It felt like the level of pushback they were receiving, on what was an age-old mistake in ISCII
that should have been resolved between South Asians and with linguistic expertise, was now
being adjudicated by Western non-experts — and why?

Meanwhile, Dr. Ketaki Dyson, the Baudelaire translator, started posting about the need to have
both khanda ta and ta with a visible virama available in the same document. Previously, these
two forms of ta had been understood to be graphemic “allographs” — two glyphs that
represented the same character, despite their differences in graphical appearance. In the Latin
alphabet, for instance, the two different ways to write the lower-case letter “a” would be
considered allographs.

a a
But Dyson argued that khanda ta and ta+virama were only allographs in the orthographic, rather
than graphemic sense: the two letters represented the same sound, yet by convention, were used
in entirely different words. To draw another parallel to the Latin alphabet, khanda ta and
ta+virama functioned much like the character combinations ‘c’, ‘ch’, ‘k’, ‘ck’ within English, all of
which could be used to represent the same sound, /k/ (as in cab, key, stomach, and lock), but,
because of spelling conventions, could not be used interchangeably in different words (as in kab,
chey, stomack, and loc). Similarly, in Bangla, Dr. Dyson explained, users would need to use
ta+virama for the word ‘tatsuma,’ a variety of orange, or for a name like ‘Marina Tsvetayeva’. In
such contexts, treating khanda ta and ta+virama as interchangeable would lead to misspellings
and confusion. 539

 Constable, Peter “Encoding Bangla Khanda-Ta With Ta+Virama” UTC Document Registry, L2/04-062.537

 Sengupta, Gautam, “[indic] Re: ENCODING BANGLA KHANDA-TA WITH TA+VIRAMA”, Email, February 4, 2004538

 Dyson, Ketaki Kushari, “[indic] Re: All Bengali behaviours (not only khanda ta)” Email, February 6, 2004.539

158

When Sengupta took the opening Dr. Dyson had created to now insist, more forcefully than ever
before, that “the BEST solution, would be to encode a distinct khanda-ta,” it seemed like
Constable might be swayed. But even as Constable mused that he could be convinced, he 540

warned that this approach would not be without its costs: khanda ta and ta+virama would
function as two different spellings, so search engines would not return results for one when
searching for the other — which was a possible bug, or was it a feature? And if this solution 541

was accepted, then implementing it would not just be a matter of Unicode incorporating it into
the Standard; those attending the annual ISO meeting would need to accept it as well. That 542

meant that the earliest that a solution would be available would still be well over a year away, in
Unicode 4.1, and even that goalpost meant treating the issue as a rush order. Otherwise, without
such a push, khanda ta would not be ‘live’ as a codepoint until the next full version of Unicode
came out, which would not be for another two years or more.

Given these challenges, not all subscribers of the Indic list seemed to agree that this was the best
way forward. One SIL colleague commented that he did not understand why khanda ta was
being treated as so problematic in the first place – why couldn’t the documentation for producing
the letter just be made clearer? Alongside this, Unicode’s Rick McGowan asked about what 543

specific advantages the separate encoding conferred: “All I want to know, and this is a question
that I'm pretty sure UTC members will ask, is: What *cannot* be done unless Khanda-Ta is
encoded?” Meanwhile, some commenters were not limiting themselves to the boundaries of 544

the Bangla language at all. One linguist from the University of Washington pointed out that
cillakṣarams, also called chillus, in the Malayalam script (another Indic script), behaved similarly
to khanda ta, undermining the case for a new codepoint for khanda ta: “Nobody has yet
suggested separate codepoints for those [Malayalam letters], and I hope nobody will.” 545

Foreshadowing what was indeed to come, another linguist responded, “I also think [these]
comments have highlighted the fact that it would be rash to take action on KHANDA-TA in
isolation, without considering the possible parallels in other Indic scripts. A possible thin end of a
wedge of unknown dimensions?” By “thin end of a wedge,” this linguist was implying that the 546

“possible parallels” in other languages might spin out of control, leading to a barrage of new
encoding requests.

In an effort to help settle the matter, the conversation turned next to historical linguistics. Several
of the linguists on the mailing list begin excavating khanda ta’s evolution as a letter within the
linguistic record, investigating whether or not it had traditionally functioned as a unique

 Sengupta, Gautam, “[indic] Re: All Bengali behaviours (not only khanda ta)” Email, February 7, 2004.540

 Constable, Peter, “[indic] Re: All Bengali behaviours (not only khanda ta)” Email, February 7, 2004.541

 Ibid.542

 Kew, Jonathan, “[indic] Re: All Bengali behaviours (not only khanda ta)” Email, February 9, 2004.543

 McGowan, Rick, “[indic] Re: All Bengali behaviours (not only khanda ta)” Email, February 7, 2004.544

 Baums, Stefan, “[indic] Khanda ta and Malayalam cillakṣarams” Email, February 9, 2004.545

 Kew, Jonathan, “[indic] Re: [indic] RE: [indic] Re: Khanda ta and Malayalam cillakṣarams” Email, February 9, 2004.546

159

semantic unit. In this vein, Dyson observed that sadhu Bangla, or “pure” Bangla, often used
words that ended with an inherent vowel sound (a), but that in cholito Bangla, or colloquial
Bangla, that final vowel was often dropped. Cholito Bangla then had the convention of using 547

ta+virama to signal that something was a sadhu Bangla word with a dropped vowel, instead of
employing a khanda ta. This case added to her argument about khanda ta and ta+virama not
being graphemic allographs, or only visual variations. They had different functions in words.

Other linguists remained unconvinced by Dyson’s argument, however. One claimed that Bangla’s
khanda ta (much like Malayalam’s chillus) still behaved in fundamentally similar ways to its
purported allograph, ta+virama:

Looking at the modern Indian scripts in general, there are FOUR
(not three) distinct ways of writing a consonant without inherent
a:

 1. consonant sign plus overt virāma,

 2. special glyphs that behave JUST LIKE no. 1 with respect to
 clustering, but look different,

 3. half-forms,

 4. component of a conjunct.

Going back a thousand years or so, there were only categories
no. 1 and 4. Half-forms (no. 3) are just a special horizontal way
of writing ligatures that developed quite recently…

No. 2, the category that includes both Bengali
khanda ta and the Malayalam cillakṣarams, is a collection of
glyphs that either have their origin in a cursive combination of
base character and a virāma mark (as most of the cillakṣarams) or
are historically fossilised reflections of the original virāma
device (as khanda ta and some of the cillakṣarams). 548

Taking this long view of history meant recognizing the historical commonalities between
categories 1 (e.g. ta+virama) and 2 (e.g. khanda ta), which in turn implied that there was no
need for separate encodings for any letters that fell into category 2, “AS LONG AS there is no
character in a modern Indian script for which all four forms of vowel cancellation are used.” 549

 Dyson, Ketaki Kushari, “[indic] Re: All Bengali behaviours (not only khanda ta)” Email, February 10, 2004.547

 Baums, Stefan, “[indic] Khanda ta, Malayalam cillakṣarams & Co.” Email, February 12, 2004.548

 Ibid.549

160

Coming from a more technical angle, Ankur’s Deepayan Sarkar was forced to agree. A new
khanda ta was not necessary, he concluded, “as long as there's a way to separately encode both
TA-VIRAMA and KHANDA-TA. Encoding khanda-ta as a separate codepoint is [just] one of several
suggested solutions to this problem.” In other words, it was still possible to address user 550

concerns over khanda ta without opening up the can of worms involved in adding a separate
encoding.

Given the fiercely divided linguistic debate, it seemed like Peter Constable might prefer to err on
the side of not adding a unique khanda ta encoding after all. If the only reason for encoding
khanda ta was to appease angry Bangla users, that might cause more harm than good. So far, he
concluded, “There has been no evidence presented of any text elements in attested usage that
cannot be represented and adequately distinguished without encoding a new character.” 551

Pulling together two weeks of hotly debated commentary, Constable soon went on to publish
PRI-30, “Encoding of Bengali Khanda ta in Unicode,” in February 2004. He accompanied the
report with a strongly-worded warning:

UTC started utilizing PRIs as a way to make it easier for a wider variety of experts to
provide input to the decision-making process. So, here's your chance. If you don't provide
feedback, then either that means you don't have a strong opinion, or that you are choosing
not to contribute your opinion in the decision-making process. 552

It was now or never: this would be the last “chance” for experts like Sengupta and Dyson to
make their voices heard. Giving their input would require a high degree of commitment,
however. Constable’s PRI was long — thirteen pages — and included background on the Bangla
script; information on the historical origins of khanda ta (as far as they were known); details on
how ta/khanda ta might appear when placed next to consonants; and an assessment of four
different possible models for encoding khanda ta. These four models included: 553

1. Unicode’s current approach (taken from Apurva Joshi’s flawed FAQ response)

2. Paul Nelson’s four-codepoint sequence suggestion

3. Andy White’s three-codepoint suggestion, since echoed by Gautam Sengupta

4. The most recent proposal to add khanda ta as an entirely separate character.

 Sarkar, Deepayan, “[indic] Re: khanda ta using ZWJ” Email, February 12, 2004.550

 Constable, Peter, “[indic] Re: khanda ta using ZWJ” Email, February 12, 2004.551

 Constable, Peter, “[indic] khanda ta PRI” Email, February 24, 2004.552

 Constable, Peter, ““Encoding of Bengali Khanda Ta in Unicode,” UTC Document Registry, L2/04-262.553

161

Diligent as always, Constable walked through the workings of each proposed model in the PRI.
How would khanda ta be triggered in each case? How would this affect how the letter ta
appeared in a ligature? What about in a non-ligated conjunct? How would vowel modifiers be
displayed? How would cluster boundaries be drawn? Could “junk sequences” (a.k.a. Omi Azad’s
long-vaunted “garbage typing”) be inputted without producing errors?

Figure 41. Three Ways Versions of Silenced Ta From PRI-30

Constable accompanied his discussions of the possible models with a considered analysis of the
advantages and disadvantages of each scheme. Here, Constable considered factors such as: the
divergence from the current Unicode encoding model, the accordance with current Indic text
rendering frameworks; the difficulty level of identifying clusters; and the possible impact on end-
users (such as how easy or difficult it might be to type a given sequence).

Figure 42. Text Sequences From Model C - Khanda Ta Rendered by Ta+Virama+Zwj

In Constable’s final analysis, the evidence did not support a separate encoding for khanda ta:

162

While there appears to be particular preference for model D [a new codepoint for khanda
ta] among some members of the Bengali community, it has not been shown that a new
character is, in fact, required: there is no text that needs to be represented that cannot be
represented without adding the new character…Unless additional technical advantages
can be identified, there is not adequate justification to select model D as the preferred
recommendation. 554

Of the remaining three options, Model C (Andy White’s proposal) would impose an additional
burden on the end-user (who would have to manually press a control character key, zwj, on their
keyboards every time they wanted to render khanda ta, rather than have the codepoint sequence
function invisibly in the background). The other two models, A and B, seemed equally workable.
Model A had the advantage of maintaining fidelity to the current Unicode Standard, making it
easy to implement; all it needed was some clarifying language in Unicode’s documentation. The
other, Model B, would maintain the same programming approach used for other Indic scripts
within the Uniscribe rendering engine, which would make it easier to explain to those
responsible for implementing it, using the documentation tools in the OpenType
specifications. 555

Constable’s own recommendation was to keep the current Unicode specification (Model A), but
clarify within Unicode’s documentation that this approach was not intended to imply that khanda
ta should be treated as a half-form. Instead, it was intended to serve as an exceptional rule for
the exceptional case of khanda ta, which would include adding additional clarifications as to how
vowel modifiers should behave around this letter (which was the original issue raised by Andy
White). The Unicode standard already included exceptions to the prototypical of zwj/zwnj/
viramas, so there was plenty of precedent for this proposed solution. 556

Given how well-researched and well-documented Constable’s recommendation was, it might
indeed have been accepted by the user community if it had been made only a few years prior. But
by this point in the khanda ta debacle, too many parties had become aware of the Unicode
Consortium’s delay in addressing the problem for any of its decisions to seem neutral or
reasonable to its Bangla user base. For many of these users, khanda ta’s encoding had come to
seem like far more than a programming issue; it had turned into a test case to see whether the
Unicode Consortium would ever start to listen to its users in South Asia. Omi Azad perfectly
summed up this defiant stance when he wrote back to Constable after finally reading the PRI,

Peter, when we say we need it [i.e. a separate khanda ta encoding], then they [the UTC]
should respect us, because we are the people who are going to use it in our way. I have doubt
if UTC will use Bangla anyhow. So they should respect our decisions. 557

 Constable, Peter, ““Encoding of Bengali Khanda Ta in Unicode,” UTC Document Registry, L2/04-262.554

 Ibid.555

 Ibid.556

 Azad, Omi, “[indic] Re: [Bangla] KhandaTa issues again” email, June 8, 2004.557

163

By distinguishing between the “people who were going to use” Bangla and those who were not,
Azad was making the case that user sentiments should supersede adherence to so-called
principle. At the same time, however, even Azad had been forced to acknowledge, “I think no one
can provide a strong approach on why KhandaTa should be encoded as a separate letter.” 558

However strong the feelings of the language community may have been, the technical evidence
just wasn’t there.

That didn’t stop the issue from picking up steam all around India and Bangladesh. Increasingly,
Ankur’s Sayamindu Dasgupta noted, whenever he met with anyone working in local
governments or educational institutions, they would bring up the issue of khanda ta. In 559

Bangladesh in particular, all the local media outlets had begun covering the khanda ta debate,
further inflaming this supposedly niche computing issue. The media narrative presented the 560

letter as “missing” from the Unicode Standard altogether, making it seem as if the Bangla
language was being corrupted by Western developers. Taneem Ahmed, the leader of Ankur,
recalls that “it seemed like we were becoming Indians based on that one character!” 561

Bangladeshi technologists had long expressed the sentiment that they had missed the boat when
India’s ISCII was incorporated into Unicode while Bangladesh then had no standard, or when
India connected to high speed submarine cables for internet while Bangladesh lagged behind
with a satellite connection. Here was an opportunity for Bangladesh to take action and assert 562

its identity, not fall along with whatever India had accomplished before it. As Omi Azad had once
expressed, khanda ta was a feature of Bangla, and Bangla alone. And Bangladesh’s language was
Bangla, and Bangla alone — a contrast to the multilingual patchwork of India, in which Bangla
was but one component.

Riled up by these incendiary media reports, many technologists in Bangladesh began to feel that
their government was not doing enough to shift the needle. Why hadn’t Bangladesh become a
paying member of the Consortium, like India had? Why weren’t Bangladeshi university
professors jumping to provide their expert linguistic analysis, like Indian professors were? The
complaints piled up across various personal blogging websites. 563

Indeed, the bloggers had a point: the Government of India had quickly waded into the fray on
behalf of their Bangla language users. Manoj Jain, the appointed interlocutor from the Ministry
of Information Technology, forwarded a note to Unicode from a Professor Chaudhuri at the
Indian Statistical Institute, which endorsed a standalone codepoint for khanda ta and added a

 Azad, Omi, “[indic] Re: PRI#30 - Bengali Khanda-ta” Email, May 20, 2004.558

 Sayamindu Dasgupta, interview, April 17, 2020.559

 Mahay Alam Khan, interview with author, July 8, 2019; Mamun Rashin, interview with author, March 29, 2022.560

 Taneem Ahmed, interview with author, February 16, 2020.561

 Progga, “[Bengalinux-core] (no subject)”, email, September 21, 2002; Mahay Alam Khan, interview.562

 Mamun Rashin, interview with author, March 29, 2022; most of these are lost to the Web but readily recalled by Bangladeshi 563

technologists.

164

new line of argumentation — the usefulness of distinct codepoints for natural language
processing:

This is about your enquiry on Bengali Khanda-ta coding in UNICODE format.
Myself and my colleagues here think that Khanda-ta should be encoded as a
separate character. This is because it will help in both scientific (eg
NLP, Computational linguistics) and commercial applications. The typist
will find it convenient to type it in a single keystroke. Moreover, by
alphabet convention of Bengali script, it is treated as a separate
Character. 564

Even TIL’s Om Vikas himself wrote a letter supporting the standalone encoding, which he
physically mailed to Unicode President Mark Davis. Though Vikas’s letter did not present any
specific technical arguments, Vikas claimed to have solicited the opinions of experts in writing it,
and presented himself as the spokesperson for their consensus opinion. 565

The “unresolved” issue of khanda ta, Vikas insinuated, was only still up for debate in the West;
“all the experts in India” had already agreed on the “consensus opinion” of a separate encoding,
implying that Unicode was behind in reflecting the status quo.

Comments from the Bengalis were not restricted to blog posts. They would make their way on to
the Indic mailing list for all to see. Azad would later reflect, “We made a big fuss. We were
young, easily mad. Our tone was harsh.” When Unicode Vice President Rick McGowan 566

informed Azad that even if khanda ta was accepted as a separate codepoint, it could not possibly
be included in the standard for several more years, Azad spat back:

Where you are living my brother? When my father was a kid then people could only
think/dream about going to moon and now you know where are we. If giant vendors like
Microsoft demand for that [separate khanda ta encoding], I believe we can get it done in 2
weeks. I don't know how, but it can be done. 567

Unicode’s response was predictable: Azad was reminded, as always, that changing the Standard
was not a matter of will, but instead a matter of adhering to the formalized, standardized
procedures long followed by Unicode’s multiple stakeholders. 568

 Jain, Manoj, “[indic] PRI#30 - Bengali Khanda-ta” Email, May 19, 2004.564

 Vikas, Om, “Letter to Mark Davis re Bengali Khanda Ta” UTC Document Registry, L2/04-233.565

 Azad, interview.566

 Azad, Omi, “[indic] Re: [Bangla] KhandaTa issues again” Email, June 11, 2004.567

 Wissink, Cathy, “[indic] Re: [Bangla] KhandaTa issues again” Email, June 11, 2004.568

165

Figure 43. Letter of Support From Government of India

166

To users on the Indian subcontinent, however, nothing about Unicode’s approach seemed
standard or fair. Local commentators complained that Unicode’s treatment of Indic scripts
seemed uneven and unjust. As one Bangladeshi commented in a post, “I was watching the forum
and what people are doing with Bangla. As far as my knowledge goes, I think it [i.e. the Bangla
language] is [being treated as a] toy for Non-Native Bangali people to play with as they feel like.
I am really disappointed with UTC & Microsoft.” The commentator supported his claim about 569

Bangla being treated as a “toy” by referencing accented Latin characters that had been encoded
straight into Unicode without any objection, even when those characters could have been
inputted as multiple codepoint sequences instead. To be fair to Unicode, these Latin characters
had only been included as standalone codepoints to ensure round-trip compatibility with
previous Latin-based encoding standards (such as ASCII) that had already been in use when
Unicode was released. And yet this compatibility policy itself reflected the needs and priorities of
Unicode’s mostly-Western user base, who may have been less willing to adopt a standard that did
not incorporate the standards to which their machines already adhered.

To a non-Western observer, then, it felt as though Unicode was more than willing to make
exceptions when they suited the needs of Latin-alphabet users, but when it came to South Asian
scripts, suddenly nothing could be done without adhering to strict procedures. That same
commentator lamented, “I have seen in Latin glyph that some of the character can be used [i.e.
inputted] by using two letter but they encoded with one. My question will be why the have
problem with Bangla where as they don’t have problem with Latin or others to add new
character.” 570

However exasperated such commentators might have felt, they doubted whether they would
really be able to change the minds of the UTC. It was quite a different situation for someone like
Gautam Sengupta, whose academic credentials and English-language skills made him harder for
the UTC to ignore. As Omi Azad put it,, “he knew our sentiment and would explain it nicely. He
wrote beautiful explanations for us.” For Azad, Sengupta’s “beautiful explanations” mattered 571

because neither the Bangladeshi nor the Indian government had ever made such an effort on
behalf of Bangla users. Government officials might submit formal-sounding proposals, but they
would never actually get involved in the forums, which is where the real debate was taking
place. Similarly, government representatives would show up at international meetings, but when
Unicode officials ignored their demands, they never seemed willing to push harder.

In this context, it fell to Gautam Sengupta to stand up for Bangla users, and he rose admirably to
the occasion by developing a new line of argument for encoding khanda ta as a separate
codepoint. In early June of 2004, he submitted his official response to PRI-30, while
simultaneously withdrawing his previous codepoint-sequence proposal for khanda ta from

 Karim, Solaiman, “[indic] Re: [Bangla] KhandaTa issues again” Email, June 11, 2004.569

 Karim, Solaiman, “[indic] Re: [Bangla] KhandaTa issues again” Email, June 11, 2004.570

 Azad, interview.571

167

February. Now, Sengupta was arguing that khanda ta deserved its own standalone codepoint 572

because it needed to be independently searchable in text. When a user used the Ctrl+F 573

function to search for khanda ta, Sengupta insisted, the results should not return words spelled
with ta+virama at all. This was because, as Dr. Dyson had already previously explained, the two
letters did not function as equivalent spellings; some words used one, some used the other, and
the distinction mattered. As Dyson had insisted, the difference between the two allographs was
not graphical but orthographic, meaning it was not just a visual difference to handle within fonts.

To help illustrate this claim, Sengupta presented a list of examples of “minimal pairs,” a
linguistics concept referring to pairs of words with slightly different phonemes (sounds). An
example of a minimal pair in English would be “let” and “lit,” which illustrates the difference
between two different vowel sounds. Sengupta’s minimal pairs worked a little differently: he
presented pairs of Bangla words that were pronounced exactly the same, but spelt differently
(ta+virama vs. khanda ta), and consequently had different meanings (as illustrated below).
These examples perfectly demonstrated why it was essential to be able to search for মত্ and মৎ
separately within a document. 574

Out of the four proposed encoding models for khanda ta that had been presented in Constable’s
PRI-30, however, only Models C and D would permit this kind of search behavior. And one of
these, Model C Andy White’s ta+virama+zwj sequence), came with severe disadvantages that
Constable himself had already laid out (i.e. users would have to disrupt their typing flow to press
a control key (zwj)). The only remaining option was Model D, the standalone encoding of
khanda ta, which Sengupta pushed more strongly than ever before:

Figure 44. Minimal Pairs Argument From Feedback on PRI-30

 Sengupta, Gautam, “FEEDBACK ON PR-30: Encoding of Bangla Khanda Ta in Unicode” UTC Document Registry, L2/04-192.572

 Ibid.573

 Ibid.574

168

With this post, Sengupta cleverly turned the framing of the debate on its head by insisting that a
standalone codepoint for khanda ta would not require a special “exception” at all, but would
rather follow the same “convention” used for “all Indian scripts,” in contrast to what Constable
and others had claimed. By presenting Model D as a means of following Unicode’s existing rules,
rather than breaking them, Sengupta made the internal politicking of which technical layer
should handle khanda ta moot; it was a “distinct grapheme” and should thus by independently
encoded. In Sengupta’s own words, one of the major advantages of this scheme was that
“Khanda ta treated on par with anusvar and visarga with which it forms a natural class: all three
represent dead consonants, none is able to bear a matra or other modifier and none can conjoin
with a following consonant.” In short, Model D would make the Standard more consistent and 575

legible to users, which fit perfectly with Unicode’s proceduralist approach. Though the cultural
understanding of all three letters as a natural class was elegant, Sengupta asserted that it was
not the only reason to encode khanda ta; it existed alongside a purely technical, search-based
argument:

Khanda ta should be encoded as a distinct character not because it is
culturally perceived to be so but because it is in fact a distinct grapheme of the
Bangla-Asamiya script, and because doing so would be the least expensive solution to
the problems we are confronted with. The arguments presented here are technical
and scientific. They have nothing to do with cultural perceptions (though the latter
can NEVER be completely ignored in issues related to language and script). 576

Sengupta was trying to walk a fine line: even though he himself believed that “cultural
perceptions” should “NEVER be completely ignored,” he knew that the Unicode committee would
only be persuaded by “technical and scientific” evidence. Would this prove to be the bulletproof
argument they needed? Sengupta had indeed managed to articulate an important point that he,
Dyson, and others had been dancing around throughout their previous messages on the Indic list.
Knowing the value that the UTC placed on proceduralism, Sengupta began by providing rigorous
technical documentation in favor of a single khanda ta codepoint. But he went on to make the
case that there was value in constructing a standard that was human-meaningful, not just
machine-readable. If the Unicode convention was for all “distinct graphemes” to be encoded as
separate characters, he argued, then within the Bangla script, that should apply to khanda ta as
much as it did to other “dead consonants,” or consonants with the inherent vowel suppressed. In
some sense, this argument wasn’t new: he had begun this long journey making a very similar set
of claims, as presented in his paper at the Tokyo linguistics conference in December of the
previous year. What had changed in the intervening months was Sengupta’s ability to appeal to
the UTC’s stated goals of consistency, efficiency, and proceduralism.

If Sengupta hoped that this thoughtful reply to PRI-30 would finally overcome Unicode’s
hesitations, he was sorely disappointed. To Sengupta’s frustration, Peter Constable continued to

 Sengupta, Gautam, “FEEDBACK ON PR-30: Encoding of Bangla Khanda Ta in Unicode” UTC Document Registry, L2/04-192.575

 Sengupta, Gautam, “FEEDBACK ON PR-30: Encoding of Bangla Khanda Ta in Unicode” UTC Document Registry, L2/04-192.576

169

take issue with his claims. Firstly, Constable objected that it was not at all clear that the entire
user community understood khanda ta to be a distinct grapheme — and if that were not the case,
then that the user community would want word searches to pull up different results for khanda
ta vs. ta+virama. Indeed, for many years the Bangla language community had seemed to take 577

for granted that khanda ta was nothing more than a visual variant of ta+virama. Several
Bengalis had agree with that assumption. The question was, whose opinions should carry more
weight: that of lay users, or that of a specialized Bangla linguist?

Secondly, though Constable found the minimal pairs demonstration interesting, he did not
consider it incontrovertible proof that a unique encoding was needed. In theory, if one really
wanted to search sometimes for মত্ and other times for মৎ, the search engine in question could
be programmed to search not just for letters but for the associated code sequences (i.e.
ta+virama+zwj vs. ta+virama). Though that admittedly convoluted search was doable,
Constable acknowledged, it did not necessarily mean it was the best design. In short, the
searching argument may be interesting and hold water, but Constable, for his part, was still
evaluating. 578

At this point, Sengupta, like Omi Azad before him, felt he was being treated with blatant
disrespect by a Western outsider who did not even speak his language:

 I am a native speaker of Bangla and a professor of linguistics and Director of a school
specializing in language technology in one of the top five Indian Universities. I have spent
most of my life working on Bangla linguistics and Indian language technology. If you have
doubts about my qualifications and training, FYI, I studied linguistics at UMass and a list
of the names of my teachers would sound like a who's who in contemporary formal
linguistics. I have taught for years in three of the most distinguished universities in India.
It is quite obvious that much of what you know about the Bangla-Asamiya writing system
is from my ILCAA paper. You'd probably not be able to cite another paper with comparable
depth and coverage on Bangla orthography. I have also spent considerable time and energy
in devising software keyboards for almost all of the major Indian scripts on a single layout
(http://geocities.com/indian_scripts). How many people do you know who would be
better qualified to advise you, or would even bother to take the time to do so, on matters
pertaining to encoding Bangla in Unicode? 579

As a “native speaker” and “professor… in one of the top five Indian Universities,” Sengupta
insisted he deserved recognition as an authority on the Bangla language. When Sengupta lashed
out at Constable for exploiting his expertise without crediting his advice — “much of what you
know… is from my ILCAA paper” — he implies that Constable was taking strong positions
without the expertise to back them. Stung, Sengupta presented a direct challenge: why “bother

 Constable, Peter, “[indic] Re: [Bangla] KhandaTa issues again” Email, June 8, 2004.577

 Ibid.578

 Sengupta, Gautam, “[indic] Re: [Bangla] KhandaTa issues again” Email, June 11, 2004.579

170

to take the time” to provide his free academic labor if Constable was going to respond with
ignorance all the same?

The thread became increasingly hostile, with Sengupta insinuating that Constable was nothing
more than a corporate shill: “In the end,” Sengupta insisted, “science is more important than
personal and/or corporate interests.” Constable, realizing the time had come to dial it back, 580

wrote, “For my part, this is not a matter of personal or corporate interests. I’m trying to discern
what makes best sense, and to weigh the feedback of various contributors, which hasn’t been
easy due to opinions from users that don’t all agree.” 581

It may have been true that users in the Bangla language community didn’t “all agree” about how
to use khanda ta. But from Sengupta’s perspective, there was still something intensely puzzling
and frustrating about Unicode’s reluctance to add a new character to the Standard. He felt that
“essentially the industry mandate was to say… Ok we have a lot of space, but don’t fill it up.” 582

Sengupta felt that his rigorous argument was so ironclad that it would have been embarrassing
not to accept it in any kind of academic setting. And even if the UTC required a different kind 583

of proof than academia, he had gone out of his way to provide that, addressing not only the
bugginess of rendering khanda ta, but the importance of making Unicode a more consistent and
linguistically accurate standard. Why was it still so hard to get this letter in?

To Sengupta, Constable’s responses may have seemed unnecessarily combative, but Constable
wasn’t actually trying to set himself up as Sengupta’s enemy. The truth was, Constable had seen
just how stubborn the UTC had been in the past about accepting so-called “cultural” arguments,
and he had been approaching the conversation with the intention of helping Sengupta identify a
strong enough rationale that the UTC would accept. To Sengupta and other Bengalis, however, 584

his challenges felt relentless and needlessly belligerent, making it hard for them to separate
Constable’s personal stance from that of Microsoft, or indeed from that of the UTC as a whole,
which was perhaps the most hard-lined party of all.

After some time to cool down, Constable wrote back to Sengupta more contritely,

 [My most recent] comment was only a reflection of the fact that it's hard to know,
especially from a distance, to what extent needs expressed by one person are representative
of the entire market. I personally know of no one more knowledgeable about Bengali
language and script, and I know that you have done work on development of keyboard
systems. But [even] a learned and technically-savvy person might not be fully informed
about user requirements (I've no reason to think you are not -- this is just a general

 Sengupta, Gautam, “[indic] Re: [Bangla] KhandaTa issues again” Email, June 9, 2004.580

 Constable, Peter, “[indic] Re: [Bangla] KhandaTa issues again” Email, June 10, 2004.581

 Sengupta, interview.582

 Sengupta, interview.583

 Peter Constable, interview with author, February 4, 2022.584

171

statement), and so I could feel more confident saying to UTC "the sorting issue is an
important concern for Bengalis" if there were more than one person saying so. 585

By calling Sengupta “learned and technically-savvy,” Constable demonstrated that he recognized
Sengupta’s expertise, and by admitting that there was “no one more knowledgeable about
Bengali,” Constable acknowledged his own position as a newcomer. Most significantly of all,
Constable insisted that he wanted to present Sengupta’s argument to the UTC — but he needed
the evidence that there was “more than one person” making these claims.

To this end, days before UTC’s the scheduled June 15th meeting, Constable was looking for one
more piece of evidence. If khanda ta was truly a unique letter of the Bangla alphabet, then the
alphabetized sorting of Bangla dictionaries should reflect that. That is, a word spelt with khanda
ta should not appear in the same interchangeable alphabetic order as a word spelt with ta.
Unfortunately, Constable’s own perusal of an official Bangla Academy dictionary turned up no
such evidence. Though khanda ta appeared in a separate section than ta in the initial alphabetic
listing, khanda ta and ta seemed to be showing up interchangeably in the actual dictionary word
list. As Constable explained:

Seeing [khanda ta] listed within the ordering of consonants in the intro of the Bangla
Academy's Bengali/English dictionary was certainly interesting, though in the same place
they also list na-phalaa, ba-phalaa, ma-phalaa, la-phalaa and some other presentation
forms. Even so, seeing [khanda ta] amongst the consonants raised the possibility of
needing to be distinguished in sorting. I looked at this some months back to see if there
was evidence for graphemic distinctiveness of khanda ta, and was actually disappointed
when I discovered the dictionary did not actually sort it any differently from ta.

I have not been unconvinced that [khanda ta] is considered a grapheme (though the only
basis I have at the moment for believing it should be so considered is that you and
Professor Dyson have told me it is.) 586

Constable had come a long way: by now, he was willing to admit that he was “not unconvinced”
by Sengupta and Dyson’s argument, even though he still thought it was lacking in hard evidence.
Luckily, at just this moment, Ankur’s Sayamindu Dasgupta — who for months had been following
the thread without actively participating — chimed in with exactly the perfect citation.
Attaching an image scan from the same dictionary that Constable had consulted, he drew
Constable’s attention to a crucial footnote he had missed.

In case it helps, here's what the Bangladesh Bangla Academy's "Bangla
Banan Abidhan" says:

 Constable, Peter, “[indic] Re: [Bangla] KhandaTa issues again” Email, June 11, 2004.585

 Constable, Peter, “[indic] Re: [Bangla] KhandaTa issues again” Email, June 13, 2004.586

172

<quote> বত5মান অিভধােন ৎ -#ক ;তT বেণ5র ময5াদা িদেয় ত এবং ত-এর
য*Aবেণ5র পের িবন.াস করা হেয়েছ। </quote>

(Bangla Academy Bangla Banan Abidhan - Jamil Chaudhury - Page 12,
published by Bangla Academy, Dhaka - 1994)

Rough translation of that would be:

In this dictionary, khanda-ta has been treated as an unique/independent
(swatantra) alphabet (barna), and it has been positioned/sorted after
ta and the conjuncts of ta.

-thanks-
Sayamindu 587

A more perfect encapsulation of the linguistic power dynamics at play could hardly have been
imagined. With his “rough translation” of this essential information that Constable hadn’t been
able to appreciate he was missing, Sayamindu Dasgupta, the “youngest person” of his Indic
computing circles, demonstrated the natural understanding the Bengalis had of their language.
In response, Constable informed him that this was very helpful, and that he would take this
clarification regarding the dictionary’s sorting order into account. Though Constable stopped 588

short of declaring himself convinced that khanda ta should be sorted separately from ta in search
results, as Sengupta had argued, Constable did now have authoritative evidence to show the UTC
in support of this claim.

Before the pivotal June UTC meeting, however, Sengupta managed to get in one last word. As
much as he appreciated the dictionary citation provided by Sayamindu in the eleventh hour, he
wrote, victory was still not certain. This was because, all evidence notwithstanding, the decision
over khanda ta would come down to a test of the UTC’s ability to accept the external expertise of
non-Western users:

Recall that we have been told time and again that the UTC considers only formally
submitted proposals and not mere postings on this list. Let us see if that is what happens
at the upcoming UTC meeting or whether Mr Constable selectively extrapolates from the
discussions here arguments that suit his end.

Let us put our heads together and see if we can put up a more organized form of resistence
to these neo-colonial, hegemonic aspiratons at national and international fora. After all, it
is for us to decide what we want to buy. If we don't like the way a multinational operates,
we can always boycott its products and look for alternatives even at the cost of some initial

 Dasgupta, Sayamindu, “[indic] Re: [Bangla] KhandaTa issues again” Email, June 13, 2004.587

 Constable, Peter, “[indic] Re: [Bangla] KhandaTa issues again” Email, June 13, 2004.588

173

hardships. Let us look out for and encourage these alternatives. For monopoly always
breeds the kind of arrogance we are witnessing now. The Govt of India, which is a
corporate member of the Consortium, has formally presented a case for encoding Khnad-ta
as a distinct character. Every native speaker on this list (without exception) has endorsed
this position - including scholars and academicians technically qualified to adjudicate on
such matters - and some have even presented meticulously worked out technical arguments
and evidence. The extent to which UTC pays heed to this demand will be a reliable
measure of its autonomy and fairness. Let us wait and see what happens at the upcoming
UTC meeting. 589

By casting doubt on the notion that even the seemingly sympathetic Constable would not
“selectively extrapolate” from the thread to “suit his [own] end,” Sengupta insinuated that
Western technocrats could not be trusted to respect the needs of South Asians. Sengupta’s bold
rallying cry recalled the nationalist language wars of the post-independence era: calling for
“organized resistance” to “neo-colonial” corporate exploitation in the form of a systematic
“boycott”. Given that “every native speaker” was united on this front, Sengupta argued, the
UTC’s decision would prove whether the committee could live up to its own stated values of
“autonomy and fairness,” or whether it would continue to be defined by “monopoly” and
“arrogance” instead. Sengupta had backed the UTC into a corner: their reputations were on the
line.

Over the previous, since the release of Unicode 4.0 in April 2003, a convergence of attention and
interest from software hobbyists, government language planners, and academic linguists had
forced the previously unchallenged Unicode Consortium to confront the limitations of their Indic
encoding schemes. As the heated debate between Gautam Sengupta and Peter Constable had
demonstrated, the battle over khanda ta had come to be a proxy war for postcolonial language
politics writ large. In the digital era, would international computing standards evolve to take into
consideration the perspectives of global actors? Or would Western tech experts committed to a
set of principles developed in a time with smaller markets, fewer voices, and different technical
constraints forever define the digital space? Could the historically embedded values of the
Unicode Standard be made to shift?

These burning questions would have to wait until the in-person meeting of the UTC itself. One
day after Sengupta’s call for “resistance” to “multinational” domineering, the conversation was
abruptly cut short by a pseudonymous moderator of the Unicode mailing list, “Sarasvati,” who
was named, appropriately enough, after the Hindu goddess of knowledge and wisdom. Citing the
need for civility, Sarasvati imposed a unilateral block on all new messages. Not until the
impending UTC meeting, where Peter Constable was slated to present the case for khanda ta,
would conversation be allowed to resume.

This discussion appears to have become somewhat heated.
I would like to remind everyone that the comment period

 Sengupta, Gautam, “[indic] Re: [Bangla] KhandaTa issues again,” Email, June 13, 2004.589

174

has passed for public comment on the issue.

Let me take the opportunity to ask everyone to please
review the new mail list policies, and try to keep the
discussion calm.

http://www.unicode.org/policies/mail_policy.html

Sorry if this list was not informed when the policies
took effect.

Regards from your,
 -- Sarasvati 590

 Sarasvati, “[indic] Khanda ta” Email, June 13, 2004.590

175

176

Conclusion: Khanda ta, encoded

“The request from South Asians for a separate khanda ta character is not new,” Peter Constable
wrote. “It goes back at least three years, to the feedback that the Indian government gave on
Unicode 3.0 (L2/01-304), and has been a recurring topic on email discussion lists.” 591

Constable was set to present to the Unicode Technical Committee (UTC) in a closed-door
meeting in Toronto, Canada, that June 15th, 2004. The eleven-page document that he circulated
in advance was intended to summarize the feedback he had received on the proposals he had
analyzed for khanda ta, which he had written up as Public Review Issue 30 (PRI-30). He would
present his case, and the UTC would now judge how to proceed on khanda ta’s encoding. In the
initial PRI-30, Constable had recommended keeping the current Unicode encoding scheme,
which used three codepoints in a sequence. They needed only to clarify the documentation and
Microsoft would need to update its rendering engine.

Constable continued in his introduction, “Regrettably, most of the requests for a new khanda ta
character have not been accompanied by a technical justification for why existing representations
are inadequate and a new character is needed.”

But:

On this occasion, though, feedback from one contributor, Gautam Sengupta (L2/04-192) did
present some technical argumentation for encoding a new character. A key element of the
case made for a new character is that the khanda ta is graphemically distinct from other
forms of ta. This is new information that was not previously available, and has some bearing
on how alternatives might be evaluated.

Constable then listed out the evidence he had newly acquired to support the claim of “Khanda ta
as a grapheme.” Several university-level Bengali experts had affirmed that khanda ta was
considered a distinct grapheme. He presented the dictionary entry and footnote provided by
Sayamindu Dasgupta, which showed khanda ta’s distinct sorting from ta. He also presented
Sengupta’s example of minimal pairs. He closed by affirming that khanda ta and ta-halant were
analogous to anusvar and nga-halant. Anusvar was the silenced version of the nga consonant,
much like khanda ta was the silenced version of ta. “Clearly anusvar and nga have long been
considered distinct graphemes.” he wrote. “Given the similarities, it should come as no surprise
that khanda ta is considered a distinct grapheme.” This had been Sengupta’s starting point in the
paper he had presented in Tokyo in December 2003.

If khanda ta was a distinct grapheme, as incontestable evidence had now come to show, then was
a distinct, atomic codepoint still needed to represent it? Here was the rub: “grapheme status has
never been considered a sufficient condition for encoding a text element as a distinct, atomic

 Constable, Peter. Review of Bengali Khanda Ta and PRI-30 Feedback. Unicode Technical Committee Document Registry. L2/04-252.591

177

character.” This went back to Unicode’s initial design, and the tautological definition of a
“character” as an invented unit whose definition would allow all of the world’s characters to fit
within a 16-bit codespace. Though, in effect, Unicode encoded all graphemes, it did not
guarantee that it would assign all graphemes a codepoint. It had reserved the right to use
sequences instead of atomic, or singular, codepoints.

Constable wrote, “The familiar answer to such a question in usual cases is to say that other
mechanisms exist for that purpose. As has been shown, however, this is not a usual case.
Alternative mechanisms have been considered yet found to have shortcomings.” Khanda ta
would not be easily rendered, or backspaced, or searched in text, or analyzed in natural language
processing, without “complex Boolean logic” in many of these cases.

“The only other obvious possibility,” he wrote, “is to encode a separate khanda ta character. The
entire discussion thus far has constituted a case for this solution.” Though this verdict was made
in plain, unemotional terms, each word carried astounding weight — affirmations of the months
of fierce debate the Bangla user community had undertaken.

It seemed Sarasvati’s block on new messages to the Indic list had been lifted by June 16th. A new
message by Gautam Sengupta came though:

I have now had the occasion to look at a document that Peter has
prepared and hopefully submitted to the UTC by now. In my opinion
the document is a fair representation of arguments for and against
encoding khanda ta as a distinct abstract character. I therefore
retract my earlier statements accusing him of harboring ill-will
towards that much-maligned grapheme. Peter, please accept my
unconditional apologies. Let's be friends again until the issue of
Ya-phalaa comes up. :) 592

Sengupta was pleased with how Constable had incorporated his evidence and accepted the
argument he had so long been developing. Until then, he had only Constable’s obstructions to go
on, and was unaware that Constable had been preparing a document in the Bengalis’ favor.

Constable responded, “Thank you, Gautam. The apology is most willingly accepted. And the
document has been submitted.” 593

The UTC meeting took place over the next three days. The committee elected to encode khanda
ta as a new Unicode codepoint, with the code U+09CE. Among their action items was to prepare
a proposal for the upcoming ISO meeting, update the Indic FAQ page with more information, and
prepare responses for the Indic list and for Om Vikas, with whom they had direct

 Sengupta, Gautam. “[indic] Re: [Bangla] not just khanda ta”. Email, June 16, 2004.592

 Constable, Peter. “[indic] Re: [Bangla] not just khanda ta”. Email, June 16, 2004.593

178

communication. These steps would make official the final determination over the much-594

contested letter.

Constable felt that his goal had never been to arbitrarily resist the Bangla user community or
deny its wishes. He simply knew that the UTC was unlikely to accept the arguments that had
thus far been put forth. It was in the days running up to the final June 15th meeting that he 595

felt he had finally wrangled defensible arguments out of Sengupta and others. Ultimately, he
wanted the language community to be satisfied; his intermediary position only put him in the
role of a difficult coach rather than a cheerleader. This sentiment came through in the concluding
paragraphs of his June 15th review document:

Up to now, the amount of careful analysis has not kept pace with the volume of words
exchanged. At greatest risk has been that a decision would be made rejecting the Indian
request without as best a case as possible having been made. This could only lead to a
widening gulf of distrust between users in the Indian sub-continent and supporters of the
Unicode program.

At the very least, I hope to have shown that the case for a separate character is not
completely without merit. Perhaps the analysis has revealed a case that is sufficiently
convincing to grant the new character that has been requested, though I do not take that as
assumed. At best, I hope to have provided a fair hearing for the Indian request such that,
regardless of the outcome of a UTC decision, users in India will feel that their needs have
been considered thoroughly, and that they can feel some confidence that implementations can
be provided that will meet their reasonable needs. 596

Though he had an undeniable role in getting khanda ta encoded, Constable was never sure of his
reception in the Bangla community. In an interview in 2021, Peter Constable wondered aloud to
me, “I was always just curious, as Bengali people look back on it today… do I stand out in the
storyline as this Westerner that was being insensitive?” 597

Though Sengupta admittedly never fully overcame his frustration with Constable from the
preceding months, Constable’s contributions were recognized and lauded by others involved in
the long debate. The lengthy khanda ta PRI documents were famous among Unicode staff –
serving as one of the turning points when the UTC really started to take the issue seriously. 598

Omi Azad too felt in awe of Constable’s work: “[Peter] wrote such a beautiful thirteen page-long

 “Approved Minutes of UTC 99 / L2 196,” accessed June 28, 2022, https://www.unicode.org/L2/L2004/04156.htm.594

 Peter Constable, interview by author, February 4, 2022.595

 Constable, Review of Bengali Khanda Ta and PRI-30 Feedback.596

 Constable, interview.597

 Ken Whistler, interview by author, April 23, 2020.598

179

https://www.unicode.org/L2/L2004/04156.htm

document for us – beautiful explanations for why khanda ta was not working well. We didn’t
have that understanding, not like how Peter wrote it. He was the only one who did it, a Microsoft
employee.” 599

Shifting Views of the Unicode Technical Committee

The UTC had accepted khanda ta’s encoding, but the verdict had not come easily. In an interview,
Constable recalled the discussion that occurred inside the UTC meeting room. Even with the
technical argumentation provided, the UTC was not overwhelmingly convinced. At that point,
Peter said, “If we don’t encode khanda ta, I don’t think it will create significant problems in terms
of the encoding model. But if we don’t encode it, if we don’t do it now, this won’t be going away.
How much more time do we want to spend continuing to deliberate?” It was at this point that he
managed to tip the vote in favor of encoding khanda ta. 600

The begrudging nature of the encoding decision came through in the message Unicode Vice
President Rick McGowan eventually posted to the Indic list, announcing the new codepoint:

At last week's UTC meeting, the committee decided to encode Bengali Khanda
Ta as a character in a future version of the Unicode Standard. The
decision to encode this character was based primarily on the evidence and
discussion presented in two recent documents:

1. Peter Constable's paper "Review of Bengali Khanda Ta and PRI-30
Feedback" (L2/04-252), and

2. Gautam Sengupta's paper "Feedback on PR-30: Encoding of Bangla Khanda
Ta in Unicode" (L2/04-192).

Both of those papers were posted to this forum earlier.

In light of those documents, the committee was satisfied that Khanda Ta
has gained enough of an independent existence in the modern writing system
that it warrants encoding as a separate character. A consensus decision was
then taken to encode it. A proposal summary form has been prepared by
Peter Constable (L2/04-264, WG2 N2809) for submission to WG2, and it should
be discussed this week.

Sengupta wrote in his paper (cited above):

 Omi Azad, interview by author, January 30, 2022.599

 Constable, interview.600

180

 "Model D conforms to the standard convention of encoding each
 grapheme as a distinct abstract character."

Members of the committee wished me to specifically point out that it is
not the case that each grapheme of a writing system is encoded, and that
this is *not* a principle of the Unicode Standard. Also, the decision to
encode Khanda Ta is *not* an endorsement of particular opinions or
positions expressed in any documents presented to the committee. 601

In some ways, the UTC was hedging. They did not want to set a precedent that would send many
more requests for new characters based on graphemes in their direction. They were still trying to
separate the wheat from the chaff – many of these requests were, in fact, for graphical variants
and not truly unique graphemes. Somehow it seemed refusing to endorse Sengupta’s argument
gave them more room to maneuver.

In truth, the UTC would only begin diving into the challenges with Indic script encoding after
this first high-profile debacle. Up to this point, the UTC members had not been directly involved
in tracing the etymology of khanda ta, or working through implementing the various models
proposed for its encoding. An aspect of Unicode’s governance that sometimes gets lost in the
literature is the relatively removed stance of the UTC.

Over time, Unicode has begun to address this distance between the final decision makers and
those with close expertise with the issues at hand. Beginning in 2010, Unicode created the
“Script Ad Hoc Committee” – a subcommittee with the mandate to “provide recommendations to
the Unicode Technical Committee (UTC) on encoding proposals and other documents, outside of
CJK or emoji-related topics.” (Other designated subcommittees would handle CJK/East Asian 602

scripts and emojis). The 10-15 people who were part of Script Ad Hoc committee would meet for
an entire day once a month from 2010-onward and closely review active proposals for encoding.
It would then prepare a summary document of recommendations for the UTC to review in its
annual meetings. The Script Ad Hoc was also authorized to provide edits on existing proposals to
help them better “meet the exacting technical requirements of the UTC.” These meetings 603

would have voluntary and unpaid, but consistent, attendance from implementers and encoders,
and would both streamline and add thoughtfulness to the encoding process for new characters.

An additional initiative to help incorporate new scripts was the creation of the Script Encoding
Initiative (SEI), stewarded by Dr. Deborah Anderson of the University of California, Berkeley’s
Department of Linguistics. SEI was started in April 2002 on the premise that extensive research

 McGowan, Rick. “[indic] Encoding of Khanda Ta”. Email, June 23, 2004.601

 “Script Ad Hoc Group,” accessed June 28, 2022, https://unicode.org/consortium/scriptadhoc.html.602

 Ibid.603

181

https://unicode.org/consortium/scriptadhoc.html

and resources regularly go into preparing historic and minority scripts for encoding. SEI would 604

provide funding to those willing to conduct this research – graduate students, professional
linguists and academics, hobbyists, and others. The research and proposal writing would be
aided by Dr. Anderson, herself a representative to the UTC, so as to meet the standards for
Unicode. This had been the type of work Gautam Sengupta, and Peter Constable to some degree,
had conducted for khanda ta; indeed, Sengupta would begin contributing occasionally to SEI in
the years following. 605

These initiatives helped institutionalize Unicode’s overall receptiveness to new encoding
proposals. However, a more subtle shift occurred after khanda ta’s encoding that would also
contribute. As one commenter had noted in the previous chapter, there was a fear that the
decision over khanda ta might trigger several more proposals for other Indic characters – “a
possible thin end of a wedge of unknown dimensions?” Indeed, conversation over 606

chillaksharams, often called chillus, in the Malayalam script were picking up in the last months of
the khanda ta discussion. Like khanda ta, chillus were similar idiosyncratic characters unique to
the Malayalam script that denoted dead consonants, or consonants with the inherent vowel
silenced. From late 2004 into 2007, ferocious debate would again take place over Unicode
forums, engaging a similarly vast set of stakeholders, and eventually result in the atomic
encoding of chillus. 607

These and other conflicts would start to unsettle the ISCII model in the minds of UTC members.
Unicode would have to appoint Tamil community liaisons through this period as well, as the
movement for boycotting Unicode in favor of a novel Tamil-centric encoding gained momentum
in the late 2000s. Though the Tamil community would begrudgingly accept Unicode , the 608 609

impact of these conflicts was clear: ISCII imperfectly addressed the needs of non-Devanagari
communities, and it wasn’t in Unicode’s interest to continue upholding it. Slowly, the
conservative nature of the UTC would give way to an openness towards new encodings.
Thorough technical justifications were still necessary, but if multiple ways of representing a
symbol were feasible, as was the case with khanda ta, the UTC was more amenable towards
picking the one that made life easier for implementers. As one UTC member reflected in a recent
interview, “if khanda ta came up now, there is no doubt it would be immediately encoded.” 610

 “Script Encoding Initiative,” accessed June 28, 2022, https://linguistics.berkeley.edu/sei/.604

 Gautam Sengupta, interview with author, October 20, 2021.605

 Kew, Jonathan. “[indic] Re: [indic] RE: [indic] Re: Khanda ta and Malayalam cillakṣarams”. Email, February 9, 2004.606

 See the documents associated with Malayalam encodings U+0D7A to 0D7F listed here: https://en.wikipedia.org/wiki/607

Malayalam_(Unicode_block)

 Lisa Moore, interview with author, April 26, 2022; Muthu Nedumaran, interview with author, April 26, 2022; Whistler, interview.608

 Ibid.609

 Whistler, interview.610

182

https://linguistics.berkeley.edu/sei/

Many of the Unicode veterans would come to acknowledge the limitations of their previous
perspectives. Ken Whistler, one of the strictest gatekeepers of the Standard, reflected,

[Khanda ta] was an interesting early case. One of the cases that showed the limitations of
ISCII, because ISCII was a one-size fits all model. ‘Pour everything into the Devanagari
model, and it would be roughly correct for Brahmi-derived scripts.’ But the problem was, they
would each end up having edge cases and their own developments. By the time you got to
South East Asia, the scripts were radically different. You can’t pour them into the same
model. 611

Their philosophy had changed in the intervening years. Now, “You take the writing system, and
you analyze it on its own terms. Don’t assume the Devanagari model is just going to work… The
assessment is, if you’re having to put in lots of joiners and non-joiners [zwjs and zwnjs], then it is
just more trouble than it’s worth.” 612

Constable, too, would explicitly acknowledge the failings of the ISCII-based, Unicode model. He
would reflect, “I guess I went into it assuming, other people have researched this and figured out
it’s the right approach… We were a little naive. It’s taken time to figure out. If we could do it all
over, we might do these Indic scripts in significantly different ways.” 613

In his own work with Microsoft, Peter would continue working on the Uniscribe rendering engine
for the nine major Indic scripts. By the time he got to the last remaining script, Oriya, the
Devanagari-based shaping engine could just no longer work. The Indic engine, as it was called,
had been written mostly to the specifications of Devanagari. Various hacks had been taped
together whenever other exceptions for different scripts had come along, but Oriya diverged so
greatly from Devanagari that it was not worth scraping together more ad hoc solutions. And 614

so, Peter would start from scratch and design a new Indic engine, called “Indic2,” which would
be released in 2007 in Windows Vista machines. In 2013, the Indic2 engine would be scrapped
again, this time replaced by a new “Universal Shaping Engine” that handled all scripts in one
system (rather than by script families, as had previously been the case), but each on their own
terms. 615

The final major factor driving changes in encoding and rendering philosophies was the addition
of new members to each institution. As the viral 2015 blog post on khanda ta had quipped, “the
composition of the Consortium’s members, directors, and officers…[is] comprised largely of
white men (and a few white women) whose first language was either English or another

 Whistler, interview.611

 Ibid.612

 Constable, interview.613

 Constable, interview; Andrew Glass, interview with author, October 29, 2021.614

 The Universal Shaping Engine would be designed by Dr. Andrew Glass, an academic-turned-Microsoft program manager who had 615

participated in Ankur/Bengalinux and Unicode discussions as a PhD student in the early 2000s.

183

European language.” Though many of these initial members did have PhD-level expertise in 616

many languages, there were no core members specializing in complex scripts such as Arabic or
Indic scripts. Several new members would slowly join the core staff and be able to say with
authority how the ISCII-model was lacking, or why relying on zwjs and zwnjs introduced
difficulties downstream. This change in internal expertise would also help Unicode veterans 617

shift their views on complex script encoding.

The New Language Politics

After the public drama over khanda ta, the Bangladeshi government would follow in India’s
footsteps and become a dues-paying full voting member of the Unicode Consortium. The move 618

was largely symbolic – they wanted to signal engagement much in the same way the Indian
government had. Bangladesh would occasionally send representatives to UTC meetings and
highlight a recurring set of issues: renaming “Bengali” as “Bangla” in the Standard, replacing
existing sequenced characters with atomic ones, and adding characters to the Bangla block that
were already included in the Devanagari block. Though the first issue was well-received, 619

Unicode’s “absoluteness guarantee” meant that even the names associated with codepoints could
not be changed without risking the collapse of downstream software. Though characters in the
Unicode software library could not be renamed “Bangla letter khanda ta”, the supplementary
documentation would be changed to say “Bengali (Bangla).” 620

 “I Can Text You A Pile of Poo, But I Can’t Write My Name,” Model View Culture (blog), accessed June 28, 2022, https://616

modelviewculture.com/pieces/i-can-text-you-a-pile-of-poo-but-i-cant-write-my-name.

 Whistler, interview.617

 Mahay Alam Khan, interview with author, July 8, 2019; Mamun Khan, interview with author, March 29, 2022.618

 Mamun Khan, interview; Kabir, Mohammed Enamul and Md Ziauddin, "Bangladesh Proposal for UTC#159.” Unicode Document 619

Registry, L2-19-196.

 “The Unicode Standard, Version 14.0,” 473.620

184

https://modelviewculture.com/pieces/i-can-text-you-a-pile-of-poo-but-i-cant-write-my-name
https://modelviewculture.com/pieces/i-can-text-you-a-pile-of-poo-but-i-cant-write-my-name

Other requests from the Bangladeshi government for characters that could already easily be
rendered (not required the gymnastics that khanda ta did) would be repeatedly denied. Though
Unicode would become more generous over the years on the addition of new codepoints, they
still held close to certain principles, including not introducing redundant characters if one
already existed. And so, requests for Bangla punctuation that mirrored Devanagari, such as
danda, or the Indic period mark, were denied. Still, at the time of writing, Bangladesh 621

maintains a voting membership and returns occasionally to Silicon Valley for UTC meetings to
present these points.

India would also stay a voting member of the Consortium, though its appearances at UTC
meetings also slowly dwindled down. Om Vikas would continue to steer the Technology
Development for Indian Languages program until 2005. After that, government-sponsored work
in language technology would continue, but in small occasional grants rather than a focused,
mission-oriented program. Engagement with Unicode from India has instead continued at the 622

state-level, in many cases, as state governments have taken advantage of Unicode’s agnoticism to
the type of institution that becomes a member, and permitted states as well as national
governments. In many years, then, the make up of the Unicode Consortium was a series of
technology companies, the University of California, Berkeley (on behalf of the Script Encoding
Initiative), and the Governments of India, Bangladesh, and Indian states such as West Bengal and
Tamil Nadu. These state representatives would advocate for the select issues relevant for their 623

language communities, and then remove themselves from the Consortium.

Issues related to active Indian languages have died down in recent years. Unicode’s focus with
respect to Indic scripts has instead moved towards historic scripts whose digitization may help
archivists and researchers. Unicode has also come to recognize its place as a diplomatic player 624

within regional language politics. It handles with care the relationships between language 625

community members and government officials, having learned from experience the high
emotions that often emerge around language digitization. This careful work includes appointing
liaisons from the UTC to regularly communicate with language community leaders and raising
funds to permit in-person visits abroad to maintain positive relations. In combination with the 626

institutional changes to create the Script Ad Hoc Committee and Script Encoding Initiatives,
Unicode’s stance has changed slowly from a scarcity to abundance mindset – working carefully
and extensively to encode the world’s minority and historic scripts.

 Mamun Khan, interview.621

 “Language Technology Journal of TDIL: Vishwabharat,” accessed June 28, 2022, https://tdil.meity.gov.in/Publications/622

Vishwabharat.aspx.

 “Unicode Membership History,” accessed June 28, 2022, https://www.unicode.org/history/contributors.html.623

 Debbie Anderson, interview with author, January 17, 2020.624

 Anderson, interview; Whistler, interview; Moore, interview.625

 Ibid.626

185

https://tdil.meity.gov.in/Publications/Vishwabharat.aspx
https://tdil.meity.gov.in/Publications/Vishwabharat.aspx
https://www.unicode.org/history/contributors.html

The Future of Bangla-Language Software

The most significant change for the Bangla computing hobbyists after the UTC decision was the
need to now update their fonts and keyboards. Unicode 4.1 would be released in March 2005
and it would include the new U+09CE khanda ta codepoint.

From: "Jamil Ahmed" <jamil@bengalinux.org>
To: <core@bengalinux.org>
"Free Bangla Font Development" <freebangfont-devel@nongnu.org>
Date: 4/6/2005 12:21:13 AM
Subject: [Freebangfont-devel] Re: Unicode 4.1.0: Khanda Ta added

We need to update our fonts to Khanda Ta compatible.
`Jamil

----- Original Message -----
From: "Sharif Islam" <mislam@uiuc.edu>
To: <core@bengalinux.org>
Sent: Friday, April 01, 2005 12:53 AM
Subject: [Ankur-core] Unicode 4.1.0: Khanda Ta added
> http://www.unicode.org/versions/Unicode4.1.0/
>
> "U+09CE BENGALI LETTER KHANDA TA has been added. This will necessitate
> adjustment of Bengali script implementations. In Unicode 4.1,
> recommendations for the representation of Khanda-Ta in Bengali differ
> from those documented in Version 4.0.1 and earlier." 627

For the tech-oriented hobbyists of Ankur/Bengalinux and the Free Bangla Fonts project, the
decision over khanda ta held less symbolic weight than it did for other stakeholders such as
linguists, media observers, and government officials. It was, still, a small victory. For many of
them, it represented their influence on these burgeoning global projects – whether it be the
Unicode Standard and Microsoft’s OpenType specifications on the proprietary side, or Qt and
Pango on the Linux side. For Deepayan Sarkar, one of Ankur’s founding members, this was the
greatest impact the group had over its years of existence: the contributions they made in helping
others understand what was needed to digitize Bangla. 628

Ankur would continue its work on Bangla computing over the next few years. Aside from
tracking the Unicode debates, its members were working on building Live CDs through 2004.

 Ahmed, Jamil. “[Freebangfont-devel] Re: Unicode 4.1.0: Khanda Ta added.” Email, April 6, 2005.627

 Deepayan Sarkar, interview with author, June 16, 2021.628

186

These were fully Bangla open source operating systems that users could easily slide into their
computers. They would hand them out for free at internet fairs in India and Bangladesh, to much
fanfare. Dhaka had its first Internet Fair in April 2004, where Ankur’s stall was prominent 629

enough to draw in many new members to the virtual community. From this point on, the 630

priorities of the group would begin to shift. With much of the multilingual stack in place by this
point – fonts, keyboards, standards – the group would begin to focus on translating interfaces. 631

This meant spending hours and hours translating strings before different software releases. They
began working on Mozilla and Open Office localization. The interests of the new members were
different from the early founders: many of them expressed deep appreciation for the Bangla
language and for the craft of translation. Their dedication was potent and surprising to the
earlier cohort of software engineers. 632

For Taneem Ahmed, the group’s fearless leader, his involvement naturally died out. His presence
on the mailing lists would steadily lessen, sometimes leading to frantic goose chases as the other
Ankur members searched for him to give them write-permissions to upload new translations
before the next launch deadline. As the new translators began to take greater ownership over 633

the organization, Taneem appeared on the message boards to write one last message in 2006. He
had been noticing that there were more frequent flame wars happening on the Ankur mailing
lists, and that they were mostly occurring between Indian and Bangladeshi members –
sometimes due to different preferences for translations, sometimes due to the different
opportunities available to members on either side of the border, sometimes for other reasons. 634

Bangla was spoken and written slightly differently between the two countries, and while it hadn’t
mattered for lower-level tooling, the differences mattered now that the focus was on translations.
India also had a richer technology scene, where open source translators were getting employed
for their work by companies such as Red Hat. These same opportunities did not exist for
Bangladeshis.

Though it was not his preferred path forward, Taneem proposed a split of the community into
Ankur India and Ankur Bangladesh; the groups would cooperate when possible, but would
otherwise coordinate their own activities, including producing separate translations for India and
Bangladesh under the “BN_in” and “BN_bd” tags, respectively. Though a few lurkers would 635

post in resistance to Taneem’s message, the damage was done, and the split would silently occur
in the coming months. In an interview, Taneem would reflect, “Right from the beginning, we

 Taneem Ahmed, interview with author, August 19, 2020; Jamil Ahmed, interview with author, September 2, 2020; Mahay Alam 629

Khan, interview; Bengalinux-core email archives.

 Ibid.630

 Ibid.631

 Ibid.632

 Dasgupta, Sayamindu. “Re: [ooo-bn-trans] Re: [Ankur-core] Update on Taneem Bhai.” Email, May 23, 2005.633

 Ahmed, Taneem. “[Ankur-core] What Ankur means to me.” Email, May 26, 2005.634

 Ahmed, Taneem. “[Ankur-core] Proposal for the future of Ankur Foundation.” Email, June 26, 2006.635

187

knew something would happen. I’m sure you know, for whatever reason, between West Bengal
and Bangladesh, things don’t always work out.” 636

In the ensuing years, Ankur India and Ankur Bangladesh would follow different paths to acquire
funding. Ankur India would be led by Runa Bhattacharjee and Sankarshan Mukhopadhyay, both
of whom were employed by Red Hat to translate Linux distributions. They would later become 637

mentors under Google’s Summer of Code program and bring in interns to do the same work.
Sayamindu would get a fellowship to work on transforming proprietary Indic fonts into Unicode-
compliant ones. Soon after, he would leave the subcontinent to begin study in Human-638

Computer Interaction at the Massachusetts Institute of Technology.

Ankur Bangladesh would come to be led by some of the newer members to the original group,
Jamil Ahmed and Mahay Alam Khan (who went by his initials, Mak). Jamil would meet a well-
connected localizer, Javier Sola, at an open source conference in 2006, who would help Ankur
Bangladesh acquire funding from his home government of Spain. Sola had previously won a 639

grant from the Spanish government to work on Khmer localization in Cambodia, and was willing
to use his expertise to help Ankur. 640

Ankur Bangladesh would need to first become a formal organization, however. It became
incorporated as an NGO and set up a physical office in Dhaka. The work sprawled in different 641

directions over the three years of the grant: font development fell behind as it became hard to
hire those with the right expertise; translations would rise and fall in activity, as new student
recruits would join and then leave; Ankur Bangladesh would seek to build relationships with
government staffers, but here too, leads would frequently dry up. The problem soon became 642

retaining talent. Jamil, one of the last active members, had gotten a visa to study in Canada.
Mak, the only person working full-time for Ankur, lived across town from the office in Puran
(Old) Dhaka. The Ankur office was rented in the neighborhood of Uttara, where much of the
new development in Dhaka was happening. With Dhaka’s infamous traffic, “it was basically a
world away.” Mak would spend equal times commuting to the Ankur office as he did working 643

there.

In both India and Bangladesh, by 2010, the groups would be dissolved.

 Taneem Ahmed, interview.636

 Runa Bhattacharjee, interview with author, September 2, 2020.637

 “FLOSS Fellowship Programme | s a r a i,” accessed June 28, 2022, https://sarai.net/floss-fellowship/; Guide hosted at: https://638

unmad.in/conv_guide/

 Jamil Ahmed, interview; Javier Sola, interview with author, September 1, 2020.639

 Sola, interview.640

 Jamil Ahmed, interview; Sola, interview; Mahay Alam Khan, interview.641

 Ibid.642

 Sola, interview.643

188

https://sarai.net/floss-fellowship/

For the earliest members, the eventual fallout of the group was unfortunate but inevitable.
Sayamindu would later express doubt over the decision for the two sides to incorporate
themselves: “Ankur was never a formal organization. Just a thing over the internet, right?” 644

Deepayan would write in a 2020 memoir,

Eventually, the online community of Ankur fizzled out. Partly this was because people moved
on with their lives, and partly because we had accomplished what we had started out to do,
which was to help enable Bengali on the web and on Free Software platforms; today, working
with Bengali is as easy on GNU/Linux systems, if not easier, than it is on Windows or Mac
OS. 645

At the same time, he wrote, “My only regret is that I never physically met anyone in the group
other than Sayamindu, and never got to know them closely enough to know what motivated
them to get involved in the first place.” 646

For Taneem Ahmed, Ankur had always been about the people involved. His goal was to help
people connect around common goals. When he had arrived at the University of Toronto many
years ago, he had noticed there was no Bangladeshi Students Association (BSA). So he had
created one, and began an annual barbecue tradition that continues to this day. He would say,
For International students, it helps them feel that they’re not alone. For those who grew up here
[in North America], you get to talk to people of a similar mindset, but with different
experiences.” Drawing the connection, he would say, “BSA was also just a meeting place. Just like
Ankur. You come here, you find other people, together you try to make something.” 647

It is hard to quantify the direct impact of groups like Ankur, or others like Indic-computing
(which faced a similar slowdown into the 2010s). The localized applications and desktops still
see new download counts on SourceForge. The Free Bangla Fonts were incorporated into other 648

tools, such as the popular open source Avro keyboard for Bangla. And the Unicode Standard 649

has their fingerprints visible in footnotes and forum archives. But for the most part, they were
creating tools at a time when there weren’t many in languages other than English. As one Ankur
member reflected, “Something changed in the mid-2000s. People started typing more in their

 Dasgupta, interview.644

 “Bangla Computing and I,” accessed June 28, 2022, https://deepayan.github.io/misc/bangla-computing.645

 Ibid.646

 Taneem Ahmed, interview with author, February 16, 2020.647

 “Bengali on Linux,” SourceForge, accessed June 28, 2022, https://sourceforge.net/projects/bengalinux/.648

 Hasan, Mehdi. “[Freebangfont-devel] FREE Bangla Software Avro Keyboard - NewVersion.” Email, September 18, 2003.649

189

https://sourceforge.net/projects/bengalinux/
https://deepayan.github.io/misc/bangla-computing

scripts. Why? Things started to come built-in. It seemed like one day the stack of tools just
became available. You could just press some buttons and do it. You didn’t have to search through
search engines for hacks that only worked in half-formed ways.” 650

As Microsoft and others had first set about to do in 2000, slowly these major software companies
had come to support the world’s languages natively on their software. Today several Bangla
keyboards come loaded onto my laptop. I can press a few buttons and the keyboard instantly
changes. I can type Bangla text and it just works. I know that behind the scenes, however, my
computer has a rendering engine that is looking through Bangla OpenType font files and
matching to the Unicode Standard to make this work. But it is no longer a delicately-assembled
puzzle for the user, but an internalized process for the machine. Whether this state of affairs is
the product of capitalism, as companies chased more and more paying users, or benevolence, or
the demands of users, one cannot definitively say. What I hope this dissertation shows, though, is
that it was likely due to the combined efforts of many dedicated individuals and institutions,
enacting old struggles in new digital systems to make it possible to write “চমৎকার!”

 Omi Azad, interview with author, January 30, 2022.650

190

Bibliography

Archives

Bengalinux/Ankur mailing list (Bengalinux-core, Ankur-core)
Free Bangla Fonts Project mailing list (freebangfonts-devel)
Indic-Computing Project mailing list (indic-computing-users, indic-computing-standards)
Unicode Mailing list
Unicode Indic Mailing list (indic)
Unicode Technical Committee Document Registry (UTC Document Registry)

Primary Sources

“Altruists International.” Accessed July 1, 2022. http://web.archive.org/web/20150206053738/
http://www.altruists.org/about/.

“Approved Minutes of UTC 99 / L2 196.” Accessed June 28, 2022. https://www.unicode.org/L2/
L2004/04156.htm.

“Bangladesh Information Project,” March 2, 2015. http://web.archive.org/web/
20150302034508/http://www.altruists.org/projects/eo/bi/.

Becker, Joseph D. “Multilingual Word Processing.” Scientific American 251, no. 1 (1984): 96–107.
Becker, Joseph D. “Unicode 88,” August 29, 1988. https://unicode.org/history/unicode88.pdf.
SourceForge. “Bengali on Linux.” Accessed June 28, 2022. https://sourceforge.net/projects/

bengalinux/.
“Bengali Template Font.” Accessed July 1, 2022. http://web.archive.org/web/20061230031531/

http://www.stat.wisc.edu/~deepayan/Bengali/FreeBangTemplate/readme.html.
Bhaskararao, edited by Peri. “International Symposium on Indic Scripts  : Past and Future  :

Organized by Research Institute for Languages and Cultures of Asia and Africa Tokyo
University of Foreign Studies Tokyo, December 17-19, 2003  : Working Papers.” 東京外国
語⼤学附属図書館ＯＰＡＣ. Accessed June 30, 2022. https://www-lib.tufs.ac.jp/opac/
recordID/catalog.bib/BB13653529.

“Bug 113551 – Bugs in the Bengali Rendering System of Pango.” Accessed July 1, 2022. https://
bugzilla.gnome.org/show_bug.cgi?id=113551.

Constable, Peter. “Review of Bengali Khanda Ta and PRI-30 Feedback,” n.d., 11.
“Development of ISCII and INSCRIPT Keyboarding - Dr. R. M. K. Sinha.” Accessed June 29, 2022.

https://sites.google.com/site/profrmksinha/research-projects/development-of-iscii-and-
inscript-keyboarding.

IGNCA. “Dr. Om Vikas - Biography.” Accessed June 28, 2022. http://ignca.gov.in/PDF_data/
Dr_om_vikas_faculty.pdf.

191

http://web.archive.org/web/20150206053738/http://www.altruists.org/about/
http://web.archive.org/web/20150206053738/http://www.altruists.org/about/
https://www.unicode.org/L2/L2004/04156.htm
https://www.unicode.org/L2/L2004/04156.htm
http://web.archive.org/web/20150302034508/http://www.altruists.org/projects/eo/bi/
http://web.archive.org/web/20150302034508/http://www.altruists.org/projects/eo/bi/
http://web.archive.org/web/20150302034508/http://www.altruists.org/projects/eo/bi/
https://unicode.org/history/unicode88.pdf
https://sourceforge.net/projects/bengalinux/
https://sourceforge.net/projects/bengalinux/
http://web.archive.org/web/20061230031531/http://www.stat.wisc.edu/~deepayan/Bengali/FreeBangTemplate/readme.html
http://web.archive.org/web/20061230031531/http://www.stat.wisc.edu/~deepayan/Bengali/FreeBangTemplate/readme.html
http://web.archive.org/web/20061230031531/http://www.stat.wisc.edu/~deepayan/Bengali/FreeBangTemplate/readme.html
https://www-lib.tufs.ac.jp/opac/recordID/catalog.bib/BB13653529
https://www-lib.tufs.ac.jp/opac/recordID/catalog.bib/BB13653529
https://bugzilla.gnome.org/show_bug.cgi?id=113551
https://bugzilla.gnome.org/show_bug.cgi?id=113551
https://sites.google.com/site/profrmksinha/research-projects/development-of-iscii-and-inscript-keyboarding
https://sites.google.com/site/profrmksinha/research-projects/development-of-iscii-and-inscript-keyboarding
http://ignca.gov.in/PDF_data/Dr_om_vikas_faculty.pdf
http://ignca.gov.in/PDF_data/Dr_om_vikas_faculty.pdf

“Early History of ASCII?” Accessed June 29, 2022. https://groups.google.com/g/
alt.folklore.computers/c/gbg5YVFaT48/m/wlVFfJ2j4hYJ.

“FAQ - Indic Scripts and Languages.” Accessed June 29, 2022. http://www.unicode.org/faq/
indic.html.

“FLOSS Fellowship Programme | s a r a i.” Accessed June 28, 2022. https://sarai.net/floss-
fellowship/.

Hudson, John. “Making Fonts for the Universal Shaping Engine.” Presented at the TYPO Labs,
May 10, 2016. http://tiro.com/John/Universal_Shaping_Engine_TYPOLabs.pdf.

“IndLinuxSaga - IndLinux.” Accessed June 29, 2022. https://www.indlinux.org/wiki/index.php/
IndLinuxSaga.

“IS 13194 (1991): Indian Script Code for Information Interchange - ISCII,” n.d., 42.
Kaplan, Michael S. “Script and Font Support in Windows,” October 31, 2007. http://

archives.miloush.net/michkap/archive/2007/10/31/5800258.html.
Karmali, Naazneen. “Microsoft’s Passage to India.” Forbes. Accessed June 29, 2022. https://

www.forbes.com/global/1998/0727/0108030a.html.
Kinross, Robin. “The Digital Wave.” Eye Magazine, 1992. https://www.eyemagazine.com/feature/

article/the-digital-wave.
Knuth, Donald E. Digital Typography. Reissue edition. Stanford, Calif: Center for the Study of

Language and Inf, 1998.
“Language Technology Journal of TDIL: Vishwabharat.” Accessed June 28, 2022. https://

tdil.meity.gov.in/Publications/Vishwabharat.aspx.
Mahesh K. Sinha, R. “A Journey from Indian Scripts Processing to Indian Language Processing.”

IEEE Annals of the History of Computing 31, no. 1 (January 2009): 8–31. https://doi.org/
10.1109/MAHC.2009.1.

Mann, Steve. “Existential Technology: Wearable Computing Is Not the Real Issue!” Leonardo 36,
no. 1 (February 2003): 19–25. https://doi.org/10.1162/002409403321152239.

“Minute on Education (1835) by Thomas Babington Macaulay.” Accessed June 30, 2022. http://
www.columbia.edu/itc/mealac/pritchett/00generallinks/macaulay/
txt_minute_education_1835.html.

Official Google Blog. “Moving to Unicode 5.1.” Accessed June 29, 2022. https://
googleblog.blogspot.com/2008/05/moving-to-unicode-51.html.

Mudur, S. P., Niranjan Nayak, Shrinath Shanbhag, and R. K. Joshi. “An Architecture for the
Shaping of Indic Texts.” Computers & Graphics 23, no. 1 (February 1, 1999): 7–24.
https://doi.org/10.1016/S0097-8493(98)00113-7.

Mukerjee, Aditya. “I Can Text You A Pile of Poo, But I Can’t Write My Name.” Model View Culture
(blog), March 17, 2015. https://modelviewculture.com/pieces/i-can-text-you-a-pile-of-
poo-but-i-cant-write-my-name.

Nelson, Paul. “Bengali Script: Formation of the Reph and Use of the ZERO WIDTH JOINER and
ZERO WIDTH NON-JOINER,” n.d., 1.

192

https://groups.google.com/g/alt.folklore.computers/c/gbg5YVFaT48/m/wlVFfJ2j4hYJ
https://groups.google.com/g/alt.folklore.computers/c/gbg5YVFaT48/m/wlVFfJ2j4hYJ
https://groups.google.com/g/alt.folklore.computers/c/gbg5YVFaT48/m/wlVFfJ2j4hYJ
http://www.unicode.org/faq/indic.html
http://www.unicode.org/faq/indic.html
https://sarai.net/floss-fellowship/
https://sarai.net/floss-fellowship/
http://tiro.com/John/Universal_Shaping_Engine_TYPOLabs.pdf
https://www.indlinux.org/wiki/index.php/IndLinuxSaga
https://www.indlinux.org/wiki/index.php/IndLinuxSaga
http://archives.miloush.net/michkap/archive/2007/10/31/5800258.html
http://archives.miloush.net/michkap/archive/2007/10/31/5800258.html
https://www.forbes.com/global/1998/0727/0108030a.html
https://www.forbes.com/global/1998/0727/0108030a.html
https://www.eyemagazine.com/feature/article/the-digital-wave
https://www.eyemagazine.com/feature/article/the-digital-wave
https://tdil.meity.gov.in/Publications/Vishwabharat.aspx
https://tdil.meity.gov.in/Publications/Vishwabharat.aspx
https://doi.org/10.1109/MAHC.2009.1
https://doi.org/10.1109/MAHC.2009.1
https://doi.org/10.1162/002409403321152239
http://www.columbia.edu/itc/mealac/pritchett/00generallinks/macaulay/txt_minute_education_1835.html
http://www.columbia.edu/itc/mealac/pritchett/00generallinks/macaulay/txt_minute_education_1835.html
http://www.columbia.edu/itc/mealac/pritchett/00generallinks/macaulay/txt_minute_education_1835.html
https://googleblog.blogspot.com/2008/05/moving-to-unicode-51.html
https://googleblog.blogspot.com/2008/05/moving-to-unicode-51.html
https://doi.org/10.1016/S0097-8493(98)00113-7
https://modelviewculture.com/pieces/i-can-text-you-a-pile-of-poo-but-i-cant-write-my-name
https://modelviewculture.com/pieces/i-can-text-you-a-pile-of-poo-but-i-cant-write-my-name
https://modelviewculture.com/pieces/i-can-text-you-a-pile-of-poo-but-i-cant-write-my-name

———. “Bengali Script: Formation of the Reph and Yaphala, and Use of the ZERO WIDTH
JOINER and ZERO WIDTH NON-JOINER,” n.d., 6.

Nunberg, Geoffrey. “Will the Internet Always Speak English?” The American Prospect, December
19, 2001. https://prospect.org/api/content/3e35e7bd-ce0d-57fe-bdc0-8327087966a9/.

Pal, Palash B. “Bangtex,” 2001. http://www.saha.ac.in/theory/palashbaran.pal/bangtex/
bangtex.html.

Raymond, Eric. “Halloween Document 8.” Accessed June 29, 2022. http://www.catb.org/~esr/
halloween/.

———. “How To Become A Hacker.” Accessed June 29, 2022. http://www.catb.org/esr/faqs/
hacker-howto.html.

———. “The Cathedral and the Bazaar.” Accessed June 29, 2022. http://www.catb.org/~esr/
writings/cathedral-bazaar/.

———. “The Magic Cauldron.” Accessed June 29, 2022. http://www.catb.org/~esr/writings/
cathedral-bazaar/magic-cauldron/.

Sarkar, Deepayan. “Bangla Computing and I,” 2020. https://deepayan.github.io/misc/bangla-
computing.

“Script Ad Hoc Group.” Accessed June 28, 2022. https://unicode.org/consortium/
scriptadhoc.html.

“Script Encoding Initiative.” Accessed June 28, 2022. https://linguistics.berkeley.edu/sei/.
Searle, Steven J. “Brief History of Character Codes in North America, Europe, and East Asia.”

TRON Web, 1999. http://tronweb.super-nova.co.jp/characcodehist.html#anchor953122.
Specter, Michael. “Computer Speak;World, Wide, Web: 3 English Words.” The New York Times,

April 14, 1996, sec. Week in Review. https://www.nytimes.com/1996/04/14/
weekinreview/computer-speak-world-wide-web-3-english-words.html.

Stallman, Richard, and Richard M. Stallman. Free Software, Free Society: Selected Essays. Edited
by Joshua Gay. 1st. ed. Boston, Mass: Free Software Foundation, 2002.

“The Story of Ekushey Project - Ekushey.” Accessed July 1, 2022. http://ekushey.org/?page/
Story_of_Ekushey_Project.

“The Unicode Standard, Version 14.0,” n.d., 1048.
“Unicode Glossary.” Accessed June 28, 2022. https://unicode.org/glossary/.
“Unicode Membership History.” Accessed June 28, 2022. https://www.unicode.org/history/

contributors.html.
U.S. Department of State. “U.S.-India Partnership: Kanpur Indo-American Program and Beyond.”

Accessed June 28, 2022. //2009-2017.state.gov/p/sca/rls/rmks/2010/144465.htm.
Vikas, Dr Om. “Language Technology Development in India,” 2001, 23.
“What Is Free Software? - GNU Project - Free Software Foundation.” Accessed June 29, 2022.

https://www.gnu.org/philosophy/free-sw.en.html.

193

https://prospect.org/api/content/3e35e7bd-ce0d-57fe-bdc0-8327087966a9/
http://www.saha.ac.in/theory/palashbaran.pal/bangtex/bangtex.html
http://www.saha.ac.in/theory/palashbaran.pal/bangtex/bangtex.html
http://www.catb.org/~esr/halloween/
http://www.catb.org/~esr/halloween/
http://www.catb.org/esr/faqs/hacker-howto.html
http://www.catb.org/esr/faqs/hacker-howto.html
http://www.catb.org/~esr/writings/cathedral-bazaar/
http://www.catb.org/~esr/writings/cathedral-bazaar/
http://www.catb.org/~esr/writings/cathedral-bazaar/magic-cauldron/
http://www.catb.org/~esr/writings/cathedral-bazaar/magic-cauldron/
https://deepayan.github.io/misc/bangla-computing
https://deepayan.github.io/misc/bangla-computing
https://unicode.org/consortium/scriptadhoc.html
https://unicode.org/consortium/scriptadhoc.html
https://linguistics.berkeley.edu/sei/
http://tronweb.super-nova.co.jp/characcodehist.html#anchor953122
https://www.nytimes.com/1996/04/14/weekinreview/computer-speak-world-wide-web-3-english-words.html
https://www.nytimes.com/1996/04/14/weekinreview/computer-speak-world-wide-web-3-english-words.html
https://www.nytimes.com/1996/04/14/weekinreview/computer-speak-world-wide-web-3-english-words.html
http://ekushey.org/?page/Story_of_Ekushey_Project
http://ekushey.org/?page/Story_of_Ekushey_Project
https://unicode.org/glossary/
https://www.unicode.org/history/contributors.html
https://www.unicode.org/history/contributors.html
https://doi.org///2009-2017.state.gov/p/sca/rls/rmks/2010/144465.htm
https://www.gnu.org/philosophy/free-sw.en.html

Secondary Sources

Acharya, Poromesh. “Development of Modern Language Text-Books and the Social Context in
19th Century Bengal.” Economic and Political Weekly 21, no. 17 (1986): 745–51.

Alam, Mahbubul. “Bangladesh Computer Council - Banglapedia.” Accessed June 29, 2022.
https://en.banglapedia.org/index.php?title=Bangladesh_Computer_Council.

“Bengali Language | Britannica.” Accessed June 28, 2022. https://www.britannica.com/topic/
Bengali-language.

Benkler, Yochai. “Coase’s Penguin, or, Linux and ‘The Nature of the Firm.’” The Yale Law Journal
112, no. 3 (2002): 369–446. https://doi.org/10.2307/1562247.

Blommaert, Jan. “Language Planning as a Discourse on Language and Society: The Linguistic
Ideology of a Scholarly Tradition.” LANGUAGE PROBLEMS & LANGUAGE PLANNING 20,
no. 3 (1996): 199–222.

Bratton, Benjamin H. The Stack: On Software and Sovereignty. 1st edition. Cambridge,
Massachusetts: The MIT Press, 2016.

Chan, Anita. “Coding Free Software, Coding Free States: Free Software Legislation and the
Politics of Code in Peru.” Anthropological Quarterly 77, no. 3 (2004): 531–45.

Chowdhury, Masud Hasan, and Md Mahbub Murshed. “Computer - Banglapedia.” Accessed June
29, 2022. https://en.banglapedia.org/index.php/Computer.

Coleman, E. Gabriella. Coding Freedom: The Ethics and Aesthetics of Hacking. Princeton: Princeton
University Press, 2012.

Cook, Susan E. “New Technologies and Language Change: Toward an Anthropology of Linguistic
Frontiers.” Annual Review of Anthropology 33, no. 1 (2004): 103–15. https://doi.org/
10.1146/annurev.anthro.33.070203.143921.

Crystal, David. Language and the Internet. Cambridge: Cambridge University Press, 2001. https://
doi.org/10.1017/CBO9781139164771.

Daniels, Peter T. “Indic Scripts: History, Typology, Study.” In Handbook of Literacy in Akshara
Orthography, edited by R. Malatesha Joshi and Catherine McBride, 11–42. Literacy
Studies. Cham: Springer International Publishing, 2019. https://doi.org/
10.1007/978-3-030-05977-4_2.

DeNardis, Laura. The Global War for Internet Governance. Yale University Press, 2014. https://
www.jstor.org/stable/j.ctt5vkz4n.

Dodd, Robin. From Gutenberg to OpenType: An Illustrated History of Type from the Earliest
Letterforms to the Latest Digital Fonts. Illustrated edition. Vancouver: Hartley and Marks
Publishers, 2006.

Driscoll, Kevin. The Modem World: A Prehistory of Social Media. New Haven: Yale University
Press, 2022.

“Early Technologies of Digital Type.” Accessed June 29, 2022. http://www.designhistory.org/
Digital_Revolution_pages/EarlyDigType.html.

194

https://en.banglapedia.org/index.php?title=Bangladesh_Computer_Council
https://doi.org/10.2307/1562247
https://en.banglapedia.org/index.php/Computer
https://doi.org/10.1146/annurev.anthro.33.070203.143921
https://doi.org/10.1146/annurev.anthro.33.070203.143921
https://doi.org/10.1017/CBO9781139164771
https://doi.org/10.1017/CBO9781139164771
https://doi.org/10.1007/978-3-030-05977-4_2
https://doi.org/10.1007/978-3-030-05977-4_2
https://www.jstor.org/stable/j.ctt5vkz4n
https://www.jstor.org/stable/j.ctt5vkz4n
http://www.designhistory.org/Digital_Revolution_pages/EarlyDigType.html
http://www.designhistory.org/Digital_Revolution_pages/EarlyDigType.html

Eastman, Carol M. Language Planning, an Introduction. Chandler & Sharp, 1983.
“Empire, Mughal - Document - Gale In Context: World History.” Accessed June 30, 2022. https://

go.gale.com/ps/i.do?p=WHIC&u=seat24826&id=GALE|
CX3447600139&v=2.1&it=r&asid=6b597320.

Grieco, Joseph M. “Between Dependency and Autonomy: India’s Experience with the
International Computer Industry.” International Organization 36, no. 3 (1982): 609–32.

Guha, Ramachandra. India After Gandhi: The History of the World’s Largest Democracy. Reprint
edition. New York/N.Y: Ecco, 2008.

Haigh, Thomas, Andrew L. Russell, and William H. Dutton. “Histories of the Internet: Introducing
a Special Issue of Information & Culture.” Information & Culture: A Journal of History 50,
no. 2 (2015): 143–59. https://doi.org/10.1353/lac.2015.0006.

Hardie, Andrew. “From Legacy Encodings to Unicode: The Graphical and Logical Principles in the
Scripts of South Asia.” Language Resources and Evaluation 41, no. 1 (2007): 1–25.

Hossain, Anushah. “Remembering East Pakistan.” The Bengal Gazette (blog), July 31, 2020.
https://bengalgazette.org/2020/07/31/remembering-east-pakistan/.

Huq, Mohammad Daniul. “Sadhu Bhasa - Banglapedia.” Accessed June 30, 2022. https://
en.banglapedia.org/index.php/Sadhu_Bhasa.

Translation Commons. “Indigenous Languages Zero to Digital.Pdf.” Accessed June 29, 2022.
https://drive.google.com/file/d/1zpZK3jfF3bDt2e5YnEw8FXSkYXSRefKu/view?
usp=embed_facebook.

Innis, Harold A. The Bias of Communication. Toronto: University of Toronto Press, Scholarly
Publishing Division, 1999.

“Internet History of 1990s | Internet History | Computer History Museum.” Accessed June 29,
2022. https://www.computerhistory.org/internethistory/1990s/.

Irani, Lilly. Chasing Innovation Making Entrepreneurial Citizens in Modern India, 2019. https://
escholarship.org/uc/item/3239b1qv.

Jha, Mithilesh Kumar. Language Politics and Public Sphere in North India: Making of the Maithili
Movement, n.d.

John, Nicholas A. “The Construction of the Multilingual Internet: Unicode, Hebrew, and
Globalization.” Journal of Computer-Mediated Communication 18, no. 3 (April 1, 2013):
321–38. https://doi.org/10.1111/jcc4.12015.

Jordan, D.K. “Languages Left behind: Keeping Taiwanese off the World Wide Web.” Language
Problems & Language Planning 26, no. 2 (August 1, 2002): 111–27. https://doi.org/
10.1075/lplp.26.2.02jor.

Joshi, Pratik, Christain Barnes, Sebastin Santy, Simran Khanuja, Sanket Shah, Anirudh
Srinivasan, Satwik Bhattamishra, Sunayana Sitaram, Monojit Choudhury, and Kalika Bali.
“Unsung Challenges of Building and Deploying Language Technologies for Low Resource
Language Communities.” arXiv, December 7, 2019. http://arxiv.org/abs/1912.03457.

Karim, Mohammad Ershadul. Cyber Law in Bangladesh. Kluwer Law International B.V., 2020.

195

https://go.gale.com/ps/i.do?p=WHIC&u=seat24826&id=GALE%7CCX3447600139&v=2.1&it=r&asid=6b597320
https://go.gale.com/ps/i.do?p=WHIC&u=seat24826&id=GALE%7CCX3447600139&v=2.1&it=r&asid=6b597320
https://go.gale.com/ps/i.do?p=WHIC&u=seat24826&id=GALE%7CCX3447600139&v=2.1&it=r&asid=6b597320
https://doi.org/10.1353/lac.2015.0006
https://bengalgazette.org/2020/07/31/remembering-east-pakistan/
https://en.banglapedia.org/index.php/Sadhu_Bhasa
https://en.banglapedia.org/index.php/Sadhu_Bhasa
https://drive.google.com/file/d/1zpZK3jfF3bDt2e5YnEw8FXSkYXSRefKu/view?usp=embed_facebook
https://drive.google.com/file/d/1zpZK3jfF3bDt2e5YnEw8FXSkYXSRefKu/view?usp=embed_facebook
https://www.computerhistory.org/internethistory/1990s/
https://escholarship.org/uc/item/3239b1qv
https://escholarship.org/uc/item/3239b1qv
https://doi.org/10.1111/jcc4.12015
https://doi.org/10.1075/lplp.26.2.02jor
https://doi.org/10.1075/lplp.26.2.02jor
http://arxiv.org/abs/1912.03457

Kelty, Christopher M. Two Bits: The Cultural Significance of Free Software. Illustrated edition.
Durham: Duke University Press Books, 2008.

Khan, M. Siddiq. “The Early History of Bengali Printing.” The Library Quarterly: Information,
Community, Policy 32, no. 1 (1962): 51–61.

King, Robert D. Nehru and the Language Politics of India, n.d.
Kornai, András. “Digital Language Death.” PLOS ONE 8, no. 10 (October 22, 2013): e77056.

https://doi.org/10.1371/journal.pone.0077056.
Kunde, Brian. “A Brief History of Word Processing (Through 1986).” Accessed June 29, 2022.

https://web.stanford.edu/~bkunde/fb-press/articles/wdprhist.html?
fbclid=IwAR2FIc7YfyzQjGVvIxajMUxyWYhpCN3voQOq2AIofkrbPjM4ww4vVNdlZkY#16.

Kurzon, Dennis. “Romanisation of Bengali and Other Indian Scripts.” Journal of the Royal Asiatic
Society of Great Britain & Ireland 20, no. 1 (January 2010): 61–74. https://doi.org/
10.1017/S1356186309990319.

obo. “Language Policy and Planning.” Accessed June 30, 2022. https://
www.oxfordbibliographies.com/view/document/obo-9780199772810/
obo-9780199772810-0273.xml.

obo. “Language Standardization.” Accessed June 28, 2022. https://
www.oxfordbibliographies.com/view/document/obo-9780199772810/
obo-9780199772810-0250.xml.

Lise M. Dobrin. “SIL International and the Disciplinary Culture of Linguistics: Introduction.”
Language 85, no. 3 (2009): 618–19. https://doi.org/10.1353/lan.0.0132.

Littauer, Richard. “Open Source Code and Low Resource Languages.” Saarland University, 2018.
https://raw.githubusercontent.com/RichardLitt/thesis/master/thesis.pdf.

Loomis, Steven, Anshuman Pandey, and Isabelle A Zaugg. “Full Stack Language Enablement.”
Steven R. Loomis, June 6, 2017. https://srl295.github.io/2017/06/06/full-stack-
enablement/index.html.

Mahoney, Michael S. “The History of Computing in the History of Technology.” Annals of the
History of Computing 10, no. 2 (April 1988): 113–25. https://doi.org/10.1109/
MAHC.1988.10011.

Mazzarella, William. “Beautiful Balloon: The Digital Divide and the Charisma of New Media in
India.” American Ethnologist 37, no. 4 (2010): 783–804.

McEnery, Anthony, and Zhonghua Xiao. “Chapter 4 Character Encoding in Corpus Construction,”
n.d., 11.

“Memoirs of the Revolution in Bengal, Anno Dom. 1757  : | Library of Congress.” Accessed June
30, 2022. https://www.loc.gov/item/94840377.

Menon, Nikhil. “‘Fancy Calculating Machine’: Computers and Planning in Independent India.”
Modern Asian Studies 52, no. 2 (March 2018): 421–57. https://doi.org/10.1017/
S0026749X16000135.

196

https://doi.org/10.1371/journal.pone.0077056
https://web.stanford.edu/~bkunde/fb-press/articles/wdprhist.html?fbclid=IwAR2FIc7YfyzQjGVvIxajMUxyWYhpCN3voQOq2AIofkrbPjM4ww4vVNdlZkY#16
https://web.stanford.edu/~bkunde/fb-press/articles/wdprhist.html?fbclid=IwAR2FIc7YfyzQjGVvIxajMUxyWYhpCN3voQOq2AIofkrbPjM4ww4vVNdlZkY#16
https://doi.org/10.1017/S1356186309990319
https://doi.org/10.1017/S1356186309990319
https://www.oxfordbibliographies.com/view/document/obo-9780199772810/obo-9780199772810-0273.xml
https://www.oxfordbibliographies.com/view/document/obo-9780199772810/obo-9780199772810-0273.xml
https://www.oxfordbibliographies.com/view/document/obo-9780199772810/obo-9780199772810-0273.xml
https://www.oxfordbibliographies.com/view/document/obo-9780199772810/obo-9780199772810-0250.xml
https://www.oxfordbibliographies.com/view/document/obo-9780199772810/obo-9780199772810-0250.xml
https://www.oxfordbibliographies.com/view/document/obo-9780199772810/obo-9780199772810-0250.xml
https://doi.org/10.1353/lan.0.0132
https://raw.githubusercontent.com/RichardLitt/thesis/master/thesis.pdf
https://srl295.github.io/2017/06/06/full-stack-enablement/index.html
https://srl295.github.io/2017/06/06/full-stack-enablement/index.html
https://doi.org/10.1109/MAHC.1988.10011
https://doi.org/10.1109/MAHC.1988.10011
https://www.loc.gov/item/94840377
https://doi.org/10.1017/S0026749X16000135
https://doi.org/10.1017/S0026749X16000135

Montaut, Annie. “Colonial Language Classification, Post-Colonial Language Movements, and the
Grassroot Multilingualism Ethos in India.” In Living Together Separately: Cultural India in
History and Politics, 2005.

Mori, K., and T. Kawada. “From Kana to Kanji: Word Processing in Japan.” IEEE Spectrum 27, no.
8 (August 1990): 46–48. https://doi.org/10.1109/6.58434.

Mudur, S. P., Niranjan Nayak, Shrinath Shanbhag, and R. K. Joshi. “An Architecture for the
Shaping of Indic Texts.” Computers & Graphics 23, no. 1 (February 1, 1999): 7–24.
https://doi.org/10.1016/S0097-8493(98)00113-7.

Nagel, Emily van der. “From Usernames to Profiles: The Development of Pseudonymity in
Internet Communication.” Internet Histories 1, no. 4 (September 2, 2017): 312–31.
https://doi.org/10.1080/24701475.2017.1389548.

Nekvapil, Jiří. “From Language Planning to Language Management.” Sociolinguistica Jahrbuch
(2006) 20, no. 2007 (February 20, 2007): 92–104. https://doi.org/
10.1515/9783484604841.92.

Olocco, Riccardo. “Linotype Bengali and the Digital Bengali Typefaces,” n.d., 118.
Paolillo, John C., and Daniel Pimienta. “Measuring Linguistic Diversity on the Internet.”

Undefined, 2005. https://www.semanticscholar.org/paper/Measuring-linguistic-diversity-
on-the-internet-Paolillo-Pimienta/38ee472199bfe795066a3f5fb5472f9d16104de0.

Paolillo, John C. “Language, the Internet and Access: Do We Recognize All the Issues?,” 2010.
http://www.efnil.org/documents/conference-publications/thessaloniki-2010/language-
languages-and-new-technologies/08-John-C-Paolillo.pdf.

Park, Dongoh. “The Korean Character Code: A National Controversy, 1987–1995.” IEEE Annals of
the History of Computing 38, no. 2 (2016): 40–53. https://doi.org/10.1353/
ahc.2016.0021.

Perold, Colette. “IBM’s World Citizens: Valentim Bouças and the Politics of IT Expansion in
Authoritarian Brazil.” IEEE Annals of the History of Computing 42, no. 3 (July 2020): 38–
52. https://doi.org/10.1109/MAHC.2020.3010892.

Raghavan, Pallavi. “The Making of South Asia’s Minorities: A Diplomatic History, 1947- 1952.”
Economic and Political Weekly, May 21, 2016.

Rahman, Tariq. Language and Politics in Pakistan. Karachi: Oxford University Press, 1997.
Ross, Fiona. “The Evolution of the Printed Bengali Character from 1778 to 1978.” University of

London, 1988.
Schumacher, E. F. Small Is Beautiful: Economics as If People Mattered. Reprint edition. New York,

N.Y: Harper Perennial, 2010.
Sebba, Mark. Spelling and Society: The Culture and Politics of Orthography around the World.

Cambridge: Cambridge University Press, 2007. https://doi.org/10.1017/
CBO9780511486739.

Siddiqi, Asif A. “Technology in the South Asian Imaginary.” History and Technology 31, no. 4
(October 2, 2015): 341–49. https://doi.org/10.1080/07341512.2016.1142632.

197

https://doi.org/10.1109/6.58434
https://doi.org/10.1016/S0097-8493(98)00113-7
https://doi.org/10.1080/24701475.2017.1389548
https://doi.org/10.1515/9783484604841.92
https://doi.org/10.1515/9783484604841.92
https://www.semanticscholar.org/paper/Measuring-linguistic-diversity-on-the-internet-Paolillo-Pimienta/38ee472199bfe795066a3f5fb5472f9d16104de0
https://www.semanticscholar.org/paper/Measuring-linguistic-diversity-on-the-internet-Paolillo-Pimienta/38ee472199bfe795066a3f5fb5472f9d16104de0
https://www.semanticscholar.org/paper/Measuring-linguistic-diversity-on-the-internet-Paolillo-Pimienta/38ee472199bfe795066a3f5fb5472f9d16104de0
https://doi.org/10.1353/ahc.2016.0021
https://doi.org/10.1353/ahc.2016.0021
https://doi.org/10.1109/MAHC.2020.3010892
https://doi.org/10.1017/CBO9780511486739
https://doi.org/10.1017/CBO9780511486739
https://doi.org/10.1080/07341512.2016.1142632

Singh, Vaibhav. “The Machine in the Colony: Technology, Politics, and the Typography of
Devanagari in the Early Years of Mechanization.” Philological Encounters 3, no. 4
(November 27, 2018): 469–95. https://doi.org/10.1163/24519197-12340051.

Smith, Alvy Ray. A Biography of the Pixel. Cambridge, Massachusetts: The MIT Press, 2021.
Star, Susan Leigh. “The Ethnography of Infrastructure.” American Behavioral Scientist 43, no. 3

(November 1, 1999): 377–91. https://doi.org/10.1177/00027649921955326.
Star, Susan Leigh, and Karen Ruhleder. “Steps Toward an Ecology of Infrastructure: Design and

Access for Large Information Spaces.” Information Systems Research 7, no. 1 (March
1996): 111–34. https://doi.org/10.1287/isre.7.1.111.

Sterne, Jonathan. MP3: The Meaning of a Format. 0 edition. Durham: Duke University Press
Books, 2012.

Subramanian, Ramesh. “India and Information Technology: A Historical & Critical Perspective.”
Journal of Global Information Technology Management 9, no. 4 (October 1, 2006): 28–46.
https://doi.org/10.1080/1097198X.2006.10856431.

Takhteyev, Yuri. Coding Places: Software Practice in a South American City. Cambridge, Mass: The
MIT Press, 2012.

Thompson, Hanne-Ruth. Bengali: A Comprehensive Grammar. Taylor & Francis, 2010. https://
www.google.com/books/edition/Bengali_A_Comprehensive_Grammar/4GoHEAAAQBAJ?
hl=en&gbpv=0.

Tsu, Jing. Kingdom of Characters: The Language Revolution That Made China Modern. Riverhead
Books, 2022.

Vaish, Viniti. Globalization of Language and Culture in Asia: The Impact of Globalization Processes
on Language. A&C Black, 2010.

Weber, Steven. The Success of Open Source. Cambridge, Mass.: Harvard University Press, 2005.
The Indian Express. “Why Assamese Script Wants Its Own Slot, and What It Has Got Instead,”

June 28, 2018. https://indianexpress.com/article/explained/why-assamese-script-wants-
its-own-slot-and-what-it-has-got-instead-5236249/.

Winner, Langdon. “Do Artifacts Have Politics?” Daedalus 109, no. 1 (1980): 121–36.
ETHW. “Word Processing for the Japanese Language,” January 9, 2015. https://ethw.org/

Word_Processing_for_the_Japanese_Language.
Zaugg, Isabelle A., Anushah Hossain, and Brendan Molloy. “Digitally-Disadvantaged Languages.”

Internet Policy Review 11, no. 2 (April 11, 2022). https://policyreview.info/glossary/
digitally-disadvantaged-languages.

198

https://doi.org/10.1163/24519197-12340051
https://doi.org/10.1177/00027649921955326
https://doi.org/10.1287/isre.7.1.111
https://doi.org/10.1080/1097198X.2006.10856431
https://www.google.com/books/edition/Bengali_A_Comprehensive_Grammar/4GoHEAAAQBAJ?hl=en&gbpv=0
https://www.google.com/books/edition/Bengali_A_Comprehensive_Grammar/4GoHEAAAQBAJ?hl=en&gbpv=0
https://www.google.com/books/edition/Bengali_A_Comprehensive_Grammar/4GoHEAAAQBAJ?hl=en&gbpv=0
https://indianexpress.com/article/explained/why-assamese-script-wants-its-own-slot-and-what-it-has-got-instead-5236249/
https://indianexpress.com/article/explained/why-assamese-script-wants-its-own-slot-and-what-it-has-got-instead-5236249/
https://indianexpress.com/article/explained/why-assamese-script-wants-its-own-slot-and-what-it-has-got-instead-5236249/
https://ethw.org/Word_Processing_for_the_Japanese_Language
https://ethw.org/Word_Processing_for_the_Japanese_Language
https://policyreview.info/glossary/digitally-disadvantaged-languages
https://policyreview.info/glossary/digitally-disadvantaged-languages

	Table of Contents
	List of Figures
	Acknowledgements
	Introduction
	Chapter 1: Assembling the Multilingual Internet
	Chapter 2: Building Bangla Software
	Chapter 3: Digitizing Language Planning
	Chapter 4: Accommodating Orthographic Reform
	Chapter 5: The Battle over Khanda ta
	Conclusion: Khanda ta, encoded
	Bibliography

